| 研究生: |
王炫棠 Wang, Hsuan-Tang |
|---|---|
| 論文名稱: |
利用流體化床合成錳/鐵氧化物雙成分材料 Synthesis of bimetallic MnO2/FeOOH using fluid-ized-bed crystallization |
| 指導教授: |
黃耀輝
Huang, Yao-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 流體化床 、結晶 、錳 、過錳酸鉀 、二氧化錳 |
| 外文關鍵詞: | Fluidized-bed, crystallization, manganese, potassium permanganate, manganese dioxide |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因二氧化錳具備氧化能力而常應用於水處理降解有機或是重金屬汙染物。本研究以流體化床反應系統合成二氧化錳與鐵氧化物雙金屬材料。廢棄鐵氧化物-BT系列具有大的比表面積(175 m2/g)、微細孔洞(0.25 nm)、表面官能基帶電性(pHpzc = 8.5 ± 1)等可吸附污染物,而披覆於BT上之二氧化錳則能氧化污染物,具有氧化與吸附之雙效特性,本研究以草酸還原過錳酸鉀及擔體顆粒利用流體化床結晶技術(FBC)合成二氧化錳/鐵氧化物雙成分材料。
吾人於流體化床研究前,先以批次化學沉澱法的瓶杯實驗(Jar-test),先行了解於操作條件下其系統之物種氧化還原關係,藉以先行評估FBC系統中合適的操作條件。二氧化錳生成的的多寡與過錳酸鉀的降解率有關,結果顯示,在系統pH值越低的情況下有越高之過錳酸鉀降解率,因此能生成越多的二氧化錳。然而,決定系統能否生成二氧化錳之因素為草酸的添加劑量,系統草酸對過錳酸鉀之理論莫耳比為2.5,當系統草酸對過錳酸鉀之莫耳比低於1.5的情況下,系統草酸還原過錳酸鉀生成之二價錳過少,無法有效地與過錳酸根發生自催化反應生成二氧化錳;草酸對過錳酸鉀莫耳比高於2.5的情況下,則會生成過多之二價錳,同樣無法有效生成二氧化錳。
以瓶杯實驗結果作為基礎,利用流體化床結晶技術(FBC)合成錳/鐵氧化物,結果顯示在FBC系統中最適化操作條件下:CKMnO4,in = 1095 ppm,pHe = 2.36,H2C2O4/KMnO4 = 1.5,HRT = 30 min,H = 30 cm,BT擔體粒徑 = 0.71-1.0 mm,經過9個HRT的操作時間,過錳酸鉀降解率達99.9%、總有機碳(TOC)去除率達96.7%、錳結晶率(CR)達94.6 %、錳去除率(TR)為94.9 %,出流口殘餘溶解性錳濃度為9.6 ppm,二氧化錳於鐵氧化物上之披覆量可達3.7 mg-MnO2/g-BT。XRD材料鑑定FBC產品顯示錳/鐵氧化物顆粒為非晶相(Amorphous phase)之晶態,以SEM分析顯示在鐵氧化物表面生成之二氧化錳形態為奈米花狀的結構。另一方面,由EDS分析錳/鐵氧化物表面的含錳量為65.5 wt%。以BET分析BT鐵氧化物在披覆二氧化錳後,使比表面積由175上升至222 m2 g-1。
將FBC系統合成之錳/鐵氧化物產品顆粒分別對降解雙氧水及降解染料RBB之應用,結果顯示,利用錳/鐵氧化物降解雙氧水(CH2O2,i = 100 mM、pHr = 3、S/L = 10 g/L、V = 1 L),能在100分鐘內,達到99%以上之降解率;利用錳/鐵氧化物降解染料RBB (CRBB,i = 100 ppm、pHr = 3、S/L = 10 g/L、V = 1 L),能在240分鐘內,達到99%以上之降解率;利用錳/鐵氧化物在加入雙氧水之系統下降解染料RBB(CRBB,i = 100 ppm、CH2O2,i = 100 mM、pHr = 3、S/L = 10 g/L、V = 1 L),能在180分鐘內,RBB染料能達到99%以上之降解率,證實錳/鐵氧化物不僅能作為吸附材,更能作為具有氧化性質之催化劑應用於處理其他汙染物。
This work successfully synthesized manganese dioxide modifing de-posited iron oxide(BT) as bimetallic MnO2/FeOOH through the chemical reduction of potassium permanganate by fluidized-bed crystallization (FBC). FBC technology could sythesize hetergeneous catalyst and solved the question from co-precipitation method consuming time and operating cost in drying and calcination . In this research, it would synthesize bime-tallic MnO2/FeOOH particles which could promote both abilities of oxida-tion and adsorption. In the synthesis of MnO2/FeOOH, the experiment was conducted at suitable conditions (CKMnO4,in = 1095 ppm, pHe = 2.36, H2C2O4/KMnO4 = 1.5, HRT = 30 min, H = 30 cm, supports diameter = 0.71-1.0 mm), the CR (Crystallization ratio of manganese) and TR (Total manganese removal) could reach up to 94.6 % and 94.9 %, the coating amount of manganese dioxide on deposited iron oxide(BT) reached up to 3.7 mg-MnO2/g-BT. For XRD and EDS analysis, the core of particle of FBC was MnO2. The BET surface area of the manganese dioxide, deter-mined by N2 adsorption, was 222 m2/g.
To examine the synthetic bimetallic MnO2/FeOOH capability of acting as a adsorbent and an oxidant. The experiments of hydrogen peroxide and azo dye Reactive Black B degradation were then carried out. The 100 mM of hydrogen peroxide could be degraded in 100 minutes. The 100 ppm of Reactive Black B also could be degraded in 240 minutes.
[1] Z. Lu, K. Lin, and J. Gan, "Oxidation of bisphenol F (BPF) by manganese dioxide," Environmental Pollution, vol. 159, pp. 2546-51, 2011.
[2] R. McKenzie, "The adsorption of lead and other heavy metals on oxides of manganese and iron," Soil Research, vol. 18, pp. 61-73, 1980.
[3] Y. H. Huang, Y. J. Shih, and C. C. Chang, "Adsorption of fluoride by waste iron oxide: the effects of solution pH, major coexisting anions, and adsorbent calcination temperature," Journal of Hazardous Materials, vol. 186, pp. 1355-9, 2011.
[4] Y. H. Huang, Y. J. Shih, C. C. Chang, and S. H. Chuang, "A comparative study of phosphate removal technologies using adsorption and fluidized bed crystallization process," Desalination and Water Treatment, vol. 32, pp. 351-356, 2011.
[5] Kirk-Othmer Encyclopedia of Chemical Technology(4th Edition), vol. 15.
[6] R. Giovanoli and E. Stähli, "Oxide und Oxidhydroxide des drei-und vierwertigen Mangans," Chimia, vol. 24, pp. 49-61, 1970.
[7] R. Giovanoli, "A simplified scheme for polymorphism in the manganese dioxides," Chimia, vol. 23, pp. 470-472, 1969.
[8] S. H. Li, Q. H. Liu, L. Qi, L. H. Lu, and H. Y. Wang, "Progress in Research on Manganese Dioxide Electrode Materials for Electrochemical Capacitors," Chinese Journal of Analytical Chemistry, vol. 40, pp. 339-346, 2012.
[9] O. Nilsen, S. Foss, H. Fjellvåg, and A. Kjekshus, "Effect of substrate on the characteristics of manganese(IV) oxide thin films prepared by atomic layer deposition," Thin Solid Films, vol. 468, pp. 65-74, 2004.
[10] Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, "Hydrothermal Growth of Manganese Dioxide into Three-Dimensional Hierarchical Nanoarchitectures," Advanced Functional Materials, vol. 16, pp. 549-555, 2006.
[11] Q. Feng, H. Kanoh, and K. Ooi, "Manganese oxide porous crystals," Journal of Materials Chemistry, vol. 9, pp. 319-333, 1999.
[12] C. M. Julien, M. Massot, and C. Poinsignon, "Lattice vibrations of manganese oxides Part I. Periodic structures," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 60, pp. 689-700, 2004.
[13] M. Rossouw, D. Liles, M. Thackeray, W. David, and S. Hull, "Alpha manganese dioxide for lithium batteries: a structural and electrochemical study," Materials research bulletin, vol. 27, pp. 221-230, 1992.
[14] M. Gray and M. Malati, "The point of zero charge of manganese dioxides," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 89, pp. 135-140, 1978.
[15] T. W. Healy, A. Herring, and D. Fuerstenau, "The effect of crystal structure on the surface properties of a series of manganese dioxides," Journal of Colloid and Interface Science, vol. 21, pp. 435-444, 1966.
[16] J. J. Morgan and W. Stumm, "Colloid-chemical properties of manganese dioxide," Journal of Colloid Science, vol. 19, pp. 347-359, 1964.
[17] R. Taylor, "The association of manganese and cobalt in soils—further observations," Journal of Soil Science, vol. 19, pp. 77-80, 1968.
[18] R. McKenzie, "The adsorption of molybdenum on oxide surfaces," Soil Research, vol. 21, pp. 505-513, 1983.
[19] R. M. McKenzie, "The adsorption of lead and other heavy metal on oxides of manganese and iron," 1980.
[20] R. McKenzie, "The reaction of cobalt with manganese dioxide minerals," Soil Research, vol. 8, pp. 97-106, 1970.
[21] W. Stumm and J. Morgan, "Aquatic ChemistryWiley," New York, p. 780, 1981.
[22] I. Bodek, W. Lyman, W. Reehl, and D. Rosenblatt, Environmental inorganic chemistry: properties, processes, and estimation methods: Pergamon press New York:, 1988.
[23] B. O. Ariyanto, "Mineralization of Organic Acid in the presence of MnCl2 by Electrochemical Oxidation Method," Master, Chemical. Engineering., cheng kung university, 2012.
[24] H. S. Posselt, F. J. Anderson, and W. J. Weber, "Cation sorption on colloidal hydrous manganese dioxide," Environmental Science & Technology, vol. 2, pp. 1087-1093, 1968.
[25] J. J. Morgan, "Applications and limitations of chemical thermodynamics in natural water systems," Equilibrium Concepts in Natural Water Systems. RF Gould, editor. American Chemical Society, Washington, DC, pp. 1-29, 1967.
[26] J. J. Morgan, "Chemical equilibria and kinetic properties of manganese in natural waters," Principles and applications of water chemistry, pp. 561-623, 1967.
[27] O. J. Hao, A. P. Davis, and P. H. Chang, "Kinetics of manganese (II) oxidation with chlorine," Journal of environmental engineering, vol. 117, pp. 359-374, 1991.
[28] J. E. V. B. a. W. Lin, "Kinetic Modeling of Manganese(II) Oxidation by Chlorine Dioxide and Potassium Permanganate," Environmental Science and Technology, 1992.
[29] J. W. Murray, "The surface chemistry of hydrous manganese dioxide," Journal of Colloid and Interface Science, vol. 46, pp. 357-371, 1974.
[30] C. Kluck and G. Achari, "Chemical oxidation techniques for in situ remediation of hydrocarbon impacted soils," Environmental Engi-neering, 2004.
[31] Harcourt, A. Vernon, and W. Esson. "PHILOS TRANS R SOC LONDBIOL SCI." Philos Trans R Soc Lond 156 (1866): 193-221.
[32] Pimienta, V.; Lavabre, D.; Levy, G.; Micheau, C. J. Phys. Chem. 1995, 99, 14635.
[33] K. A. Kovács, "Revising the mechanism of the permanganate/oxalate reaction," The Journal of Physical Chemistry A, vol. 108, pp. 11026-11031, 2004.
[34] Hindson, Christopher M., et al. "Autocatalytic chemiluminescence sheds new light on the classic permanganate–oxalate reaction." The Journal of Physical Chemistry A 117.19 (2013): 3918-3924.
[35] U. Schwertmann and R. M. Taylor, "Iron oxides," in Minerals in soil environments, ed: Soil Science Society of America, 1989, pp. 379-438.
[36] 賴進興, "氧化鐵覆膜濾砂吸附過濾水中銅離子之研究," 國立台灣大學環境工程研究所博士論文, 1995.
[37] R. M. Cornell and U. Schwertmann, The iron oxides: structure, properties, reactions, occurrences and uses: Wiley-Vch, 2003.
[38] 孫嘉福 and 駱尚廉, "氧化鐵之特性與應用," ed: 自來水會刊雜誌, 1994.
[39] Y. H. Huang, Y. J. Huang, H. C. Tsai, and H. T. Chen, "Degradation of phenol using low concentration of ferric ions by the photo-Fenton process," Journal of the Taiwan Institute of Chemical Engineers, vol. 41, pp. 699-704, 2010.
[40] Y. H. Huang, Y. F. Huang, P. S. Chang, and C. Y. Chen, "Comparative study of oxidation of dye-Reactive Black B by different advanced oxidation processes: Fenton, electro-Fenton and photo-Fenton," Journal of Hazardous Materials, vol. 154, pp. 655-62, Jun 15 2008.
[41] Y. J. Shih, C. P. Lin, and Y. H. Huang, "Application of Fered-Fenton and chemical precipitation process for the treatment of electroless nickel plating wastewater," Separation and Purification Technology, vol. 104, pp. 100-105, 2013.
[42] Y. H. Huang, H. T. Su, and L. W. Lin, "Removal of citrate and hypophosphite binary components using Fenton, photo-Fenton and electro-Fenton processes," Journal of Environmental Sciences, vol. 21, pp. 35-40, 2009.
[43] A. Myerson, Handbook of industrial crystallization: Butterworth-Heinemann, 2002.
[44] E. G. Denk and G. D. Botsaris, "Fundamental studies in secondary nucleation from solution," Journal of Crystal Growth, vol. 13, pp. 493-499, 1972.
[45] Y. H. Huang, Y. J. Shih, and F. J. Cheng, "Novel KMnO4-modified iron oxide for effective arsenite removal," Journal of Hazardous Materials, vol. 198, pp. 1-6, Dec 30 2011.
[46] "中華民國行政院環境保護署,放流水標準," 2014.
[47] "Industrial Effluent Guidelines US EPA, Textile mills, 40CFR 410, COD," 1982.
[48] L. C. Maurizio Pettine, and Frank J. Millero, "Arsenite oxidation by H2O2 in aqueous solutions," Geochimica et Cosmochimica Acta, 1999.
[45] A. A. Michael C. Dodd. Ngoc Duy Vu, Van Chieu Le. Reinhard Kissner, Hung Viet Pham, The Ha Cao, Michael Berg, and Urs Von Gunten., "Kinetics and mechanistic aspects of As(III) oxidation by aqueous chlorine,chlorramines and ozone:relevance to drinking water treatment," Environmental Science and Technology, 2006.
[46] H. A. Andrianisa, A. Ito, A. Sasaki, J. Aizawa, and T. Umita, "Biotransformation of arsenic species by activated sludge and removal of bio-oxidised arsenate from wastewater by coagulation with ferric chloride," Water Research, vol. 42, pp. 4809-17, 2008.
[47] M. I. Litter, M. E. Morgada, and J. Bundschuh, "Possible treatments for arsenic removal in Latin American waters for human consumption," Environmental Pollution, vol. 158, pp. 1105-18, 2010.
[48] Tsou, J., L. Pinard, P. Magnoux,J. L. Figueiredo, and M. Guisnet, “Catalytic Oxidation of Volatile Organic Compounds(VOCs). Oxidation of 0-Xylene Over Pt/HBEA Catalysts”, Applied Catalysis B:Enviromental, Vol.46 371-379(2003).
[49] Tsou, J., P. Magnoux, M. Guisnet, J. J. M. Orfao, and J. L. Figueiredo, “Catalytic Oxidation of Volatile Organic Compounds. Oxidation of Methyl-Isobutyl-Ketone Over Pt/Zeolite Catalysts”, Applied Catalysis B:Enviromental, Vol.57 117-123(2005).
[50] Ihm, S. K., Y. D. Jun, D. C. Kim, and K. E. Jeong,“Low-Temperature Deactivation and Oxidation State of Pd/γ-Al2O3 Catalysts for Total Oxidation of n-Hexane”, Catalysis Today, Vol.93-95 149-154(2004).
[51] Zhang, C., H. He, and K. I. Tanaka, “Perfect Catalytic Oxidation of Formaldehyde over a Pt/TiO2 Catalyst at Room Temperature”, Catalysis Communications, Vol.6 211-214(2005).
[52] Maldonado-Hódar F. J., C. Moreno-Castilla, and A. F. Perez-Cadenas,
“Catalytic Combustion of Toluene onPlatinum-Containing Monolithic
Carbon Aerogels”, Applied Catalysis B: Enviromental, Vol.54
217-224(2004).
[53] Álvarez-Galván, M. C., B. Pawelec, V. A. de la Pena O’Shea, J. L. G.
Fierro, and P. L. Arias, ”Formaldehyde/Methanol Combustion on
Alumina-Supported Manganese-Palladium Oxide Catalyst”,Applied
Catalysis B: Enviromental, Vol.51 83-91(2004).
[54] Papaefthimiou, P., T. Ioannides, and X. E. Verykios, “Combustion of
non-Halogenated Volatile Organic Compounds over VIII Metal
Catalysts”, Applied Catalysis B:Enviromental, Vol.13175-184(1997).
[55] Chae, J. O., R. Pyagai, V. Demidiouk, S. I. Moon, D. Y. Lee, and I.
C. Choi,”Influence of Cobalt Precursors on the Catalytic Activity of the
Cobalt Oxide/Al2O3 Catalysts”, Reaction Kinetics and Catalysis
Letters, Vol.83 369-375(2004).
[56] Alvarez-Merino, M., M. F. Ribeiro, J. M. Silva, F. Carrasco-Marin, and
F. J. Maldonado-Hodar, “Activated Carbon and Tungsten Oxide
Supported on Activated Carbon Catalysts for Toluene Catalytic
Combustion”, Enviromental Science and Technology, Vol.38
4664-4670(2004).
[57] Wang, C. H., and S. S. Lin, “Preparing an Active Cerium Oxide
Catalyst for the Catalytic Incineration of Aromatic Hydrocarbon”,
Applied Cataltsis A:General, Vol.268 227-233(2004).
[58] Wang, C. H. “Al2O3-Supported Transition-Metal Oxide Catalysts for
Catalytic Incineration of Toluene”, Chemosphere, Vol.5511-17(2004).
[59] Gandia L. M., M. A. Vicente, and A. Gil, “Complete Oxidation of
Acetone Over Manganese Oxide Catalysts Supported on Alumina- and
Zirconia-Pillared Clays”, Applied Catalysis B:Enviromental Vol.38(4)
295-307 (2002).
[60] Tseng T. K., H. Chu, and H. H. Hsu,”Characterization of
γ-Alumina-Supported Manganese Oxide as an Incineration Catalyst
for Trichloroethylene”, Environmental Science Technology Vol.37(1)
171-176 (2003).
[61] Pinna F. (1998). “Supported metal catalysts preparation.”, Catalysis
Today, 41, 129-137
[62] 李秉傑, 邱宏明, 王奕凱(譯), 非均勻系催化原理與應用, 渤海堂
文化事業, 台北市,1988 年 2 月初版。
[63] Krijn P. de Jong, Synthesis of Solid Catalysts, 59-82(2009)
[64] Habibi, M.H. and V. Mosavi, “Photo-catalytic activity of highly
efficient binary Mn–Fe nano composite oxides for degradation of cresol
fast violet: phase formation and band gap study.” Journal of Materi-als
Science: Materials in Electronics, 2017. 28(18): p. 13643-13648.
[65] Son, B.H.D., et al., “Catalytic wet peroxide oxidation of phenol
solution over Fe–Mn binary oxides diatomite composite.” Journal of
Porous Materials, 2016. 24(3): p. 601-611.
[66] Villaseñor, Jorge, Patricio Reyes, and Gina Pecchi. “Catalytic and
photocatalytic ozonation of phenol on MnO2 supported catalysts.”
Catalysis Today 76.2-4 (2002): 121-131.
[67] Kang Y. C., S. B. Park, and Y. W. Kang, “Preparation of High Sur-face
Area Nanophase Particles by Low Pressure Spray Pyrolysis”,
NanoStructured Materials Vol.5 No.7/8777-791(1995).
[68] 劉昱翬, 白曛綾, and張宗良. 利用氧化錳觸媒去除氣流中臭氧, 一
氧化碳與異丙醇之研究. 2004. PhD Thesis.
[69] 魏得育, and 呂世源. “最輕的固體–氣凝膠,” 科學發展, 2006年6
月,402期,60 ~ 65頁
[70] A. Graveland, J. Van Dijk, P. De Moel, and J. Oomen, "Developments in water softening by means of pellet reactors," Journal (American Water Works Association), pp. 619-625, 1983.
[71] 詹豐隆, "含鎳廢水流體化床結晶處理技術之應用," 臺灣大學環境工程學研究所學位論文, pp. 1-82, 2004.
[72] 黃烱秦, "以鋇系化學過氧沉澱法結合流體化床均質顆粒化技術回收含硼廢水中的硼," 成功大學化學工程學系學位論文, pp. 1-110, 2016.
[73] R. van Lier, C. Buisman, A. Giesen, and D. W. BV, "Crystalactor® technology and its applications in the mining and metallurgical industry," Solid/Liquid Separation including Hvdrometallurgy and the Environment, GB Harris and SJ Omelon, Eds., Canadian Institute of Mining, Mettallurgy and Petroleum, Montreal, Canada, pp. 221-231, 1999.
[74] 黃若琳, “二氧化錳與錳/鐵氧化物之合成與應用” ,國立成功大學化學工程學系碩士論文, 2013.
[75] C. Lee and W. Yang, "Heavy metal removal from aqueous solution in sequential fluidized-bed reactors," Environmental technology, vol. 26, pp. 1345-1354, 2005.
[76] Huang, Yao-Hui, Yu-Jen Shih, and Fu-Ji Cheng. "Novel KMnO4-modified iron oxide for effective arsenite removal." Journal of hazardous materials,198 (2011): 1-6.
[77] Shih, Yu-Jen, Re-Lin Huang, and Yao-Hui Huang. "Adsorptive removal of arsenic using a novel akhtenskite coated waste goethite." Journal of Cleaner Production 87 (2015): 897-905.
[78] 黃世賢, “以過錳酸鉀氧化草酸並在廢棄鐵氧化物表面回收二氧化錳” ,國立成功大學化學工程學系碩士論文, 2018.
[79] S. Sung, D. Lee, and C. Huang, "Steady-state humic-acid-containing blanket in upflow suspended bed," Water research, vol. 39, pp. 831-838, 2005.
[80] S.-S. Sung, D.-J. Lee, and R.-M. Wu, "Steady-state solid-flux plot of blanket in upflow suspended bed," Journal of the Chinese Institute of Chemical Engineers, vol. 36, pp. 385-390, 2005.
[81] D. D. Gates-Anderson, R. L. Siegrist, and S. R. Cline, "Comparison of potassium permanganate and hydrogen peroxide as chemical oxidants for organically contaminated soils," Journal of Environmental Engineering, vol. 127, pp. 337-347, 2001.
[82] Perez-Benito, Joaquin F., Conchita Arias, and Elisenda Amat. "A kinetic study of the reduction of colloidal manganese dioxide by oxalic acid."Journal of Colloid and Interface Science, 177.2 (1996): 288-297.
[83] J. E. Van Benschoten, W. Lin, and W. R. Knocke, "Kinetic modeling of manganese (II) oxidation by chlorine dioxide and potassium permanganate," Environmental science & technology, vol. 26, pp. 1327-1333, 1992.
[84] T. Gan, Z. Shi, Y. Deng, J. Sun, and H. Wang, "Morphology–dependent electrochemical sensing properties of manganese dioxide–graphene oxide hybrid for guaiacol and vanillin," Electrochimica Acta, vol. 147, pp. 157-166, 2014.
[85] 張鈞期, "不同金屬藥劑的流體化床結晶技術處理含磷廢水之研究," 成功大學化學工程學系學位論文, pp. 1-118, 2009.
[86] Do, S. H., Batchelor, B., Lee, H. K., & Kong, S. H. "Hydrogen peroxide decomposition on manganese oxide (pyrolusite): kinetics, intermediates, and mechanism. " Chemosphere, 75(1), 8-12, 2009.
[87] 《化工環保》 Vol.20 No.1 P.14-18,2000.
[88] Arslan I., Balcioglu I.A., "Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes: a comparative study", Dyes and Pigments, 43, 95, 1999.
[89] Meric S., Kaptan D., Olmez T., "Color and COD removal from wastewater containing Reactive Black 5 using Fenton’s oxidation process", Chemosphere, 54, 435, 2004.