簡易檢索 / 詳目顯示

研究生: 賽錫望
Setiawan, Hendri Evan
論文名稱: 利用金屬氧化物當阻絕層提升有機染料敏化太陽能電池的效率
Photovoltaic Properties Enhancement in Organic Dye-Sensitized Solar Cells by Using Secondary Metal Oxides as Blocking Layer
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 112
外文關鍵詞: Dye-sensitized solar cell, Blocking layer, Alternating assembly structure, Organic dye, Dye cocktails
相關次數: 點閱:59下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Secondary metal oxides as blocking layer is employed at the interface of TiO2 films, and its influence on dye-sensitized solar cells (DSSCs) is investigated. Al2O3 and MgO were fabricated by dipping mesoporous, nanocrystalline TiO2 films in precursor. These secondary metal oxides are shown in all cases to act as blocking layers retarding recombination. Al2O3 and MgO blocking layer resulted in a 10% and 15% enhancement respectively. The modification and sensitization processes were repeated several times in the alternating assembly. The experimental results revealed that the cells with two cycles exhibited the best performance and raised the conversion efficiency by 17.14% for Al2O3 blocking layer, and 17.65% for MgO blocking layer, respectively. These results suggested that secondary metal oxides can increase the amount of dye adsorption and prohibit the dye aggregation, while the metal oxide layer plays a role in retarding the recombination reaction. The co-sensitization of two organic dyes (D149 and SQ2) by dye cocktails method, which are complementary in their spectral responses, shows enhanced photovoltaic performance by 5.64% compared with that of an individual organic dye-sensitized solar cell. These effects were investigated by current density-voltage characteristics, ultraviolet-visible spectrum, dark current measurements, incident photon to current conversion efficiencies (IPCE), and electrochemical impedance spectroscopy (EIS).

    ABSTRACT I ACKNOWLEDGEMENT II TABLE OF CONTENTS III LIST OF TABLES VII LIST OF FIGURES IX CHAPTER ONE INTRODUCTION 1 1.1 Background and Motivation of the study. 1 1.2 Objectives of the study 3 1.3 Outline of the thesis 4 CHAPTER TWO THEORETICAL 6 2.1 Operational Principle of Dye-Sensitized Solar Cell 6 2.2 Historical Background and Development of Dye-Sensitized Solar Cells (DSSC) 10 2.3 Photovoltaic Parameters that Characterize the Performance of Dye-Sensitized Solar Cell 17 2.3.1 Incident Photo-to-Current Conversion Efficiency ( IPCE) 18 2.3.2 Photocurrent/Voltage Curve (I-V Curve) 19 2.4 Solar Irradiation and Availability of Solar Electricity 22 2.5 Electrochemical Impedance Spectroscopy ( EIS) 24 2.5.1 The theory in AC impedance 24 2.5.2 Dye-Sensitized Solar Cell Using Electrochemical Impedance Spectroscopy 26 2.6 Dye Sensitizer 28 2.6.1 Individual dye sensitization 28 2.6.2 Co-sensitization 31 2.6.2.1 Dye cocktails approach 33 2.6.2.2 Bandgap Cascade 38 2.7 Metal Oxide as Blocking Layers 39 CHAPTER THREE EXPERIMENTAL 44 3.1 Chemical and Materials 44 3.1.1 Chemicals 44 3.1.2 Materials 46 3.2 Instrumentation 46 3.3 Preparation of the dye-sensitized solar cells 51 3.3.1 Substrates 51 3.3.1.1 Pretreatment of FTO substrate 52 3.3.2 Nanoparticle electrodes 53 3.3.2.1 Preparation of nanostructured TiO2 electrodes 53 3.3.3 Dye Sensitizer 56 3.3.4 Preparation of Al2O3 layers 58 3.3.5 Preparation of MgOlayers 58 3.3.6 Cell configurations 58 3.3.7 Counter-electrode 59 3.3.8 Electrolyte 59 3.3.9Assembling the cell 60 3.3.10 Testing the dye solar cells 61 CHAPTER FOUR RESULTS AND DISCUSSION 62 4.1 The absorption spectra characteristic of organic dye 62 4.1.1 D149 62 4.1.2 Mercurochrome 64 4.1.3 SQ2 66 4.1.4 Co-sensitization of organic dyes 68 4.2 Effect of Al2O3 and MgO as blocking layer by single dye approach 69 4.2.1 D149 dye adsorbed on TiO2 film 69 4.2.1.1 Photovoltaic performance of the DSSCs 69 4.2.1.2 The absorption spectra characteristic of D149 dye 71 4.2.2 D149 dye adsorbed on TiO2 film utilizing Al2O3 as the blocking layer 72 4.2.3 D149 dye adsorbed on TiO2 film utilizing MgO as the blocking layer 74 4.2.4 Comparison between Al2O3 and MgO as blocking layer 76 4.2.5 Effect of MgO blocking layer by using different dyes 79 4.3 Single dye approach by utilization of Al2O3 and MgO layer in alternating assembly structure 81 4.3.1 Single dye approach by utilization of Al2O3 layer 81 4.3.2 Single dye approach by utilization of MgO layer 85 4.4 Double dye approach 87 4.4.1 Bandgap cascade method 88 4.4.2 Dye cocktails method 93 4.5 Electrochemical Impedance Spectroscopy Analysis 98 CHAPTER FIVE CONCLUSIONS 100 REFERENCES 102

    Adachi, M., M. Sakamoto, J. Jiu, Y. Ogata & S. Isoda (2006) Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells Using Electrochemical Impedance Spectroscopy. The Journal of Physical Chemistry B, 110, 13872-13880.
    Alex, S., U. Santhosh & S. Das (2005) Dye sensitization of nanocrystalline TiO2: Enhanced efficiency of unsymmetrical versus symmetrical squaraine dyes. Journal of Photochemistry and Photobiology A: Chemistry, 172, 63-71.
    Chen, S. G., S. Chappel, Y. Diamant & A. Zaban (2001) Preparation of Nb2O5 Coated TiO2 Nanoporous Electrodes and Their Application in Dye-Sensitized Solar Cells. Chemistry of Materials, 13, 4629-4634.
    Chen, Y., Z. Zeng, C. Li, W. Wang, X. Wang & B. Zhang (2005) Highly efficient co-sensitization of nanocrystalline TiO2 electrodes with plural organic dyes. New Journal of Chemistry, 29, 773-776.
    Clifford, J. N., E. Palomares, M. K. Nazeeruddin, R. Thampi, M. Grätzel & J. R. Durrant (2004) Multistep Electron Transfer Processes on Dye Co-sensitized Nanocrystalline TiO2 Films. Journal of the American Chemical Society, 126, 5670-5671.
    Diamant, Y., S. G. Chen, O. Melamed & A. Zaban (2003) Core−Shell Nanoporous Electrode for Dye Sensitized Solar Cells:  the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core. The Journal of Physical Chemistry B, 107, 1977-1981.
    Fang, J., L. Su, J. Wu, Y. Shen & Z. Lu (1997) Fabrication, characterization, and photovoltaic study of dye-co-modified TiO2 electrodes. New Journal of Chemistry, 21, 1303-1307.
    Fillinger, A., D. Soltz & B. A. Parkinson (2002) Dye Sensitization of Natural Anatase Crystals with a Ruthenium-Based Dye. Journal of The Electrochemical Society, 149, A1146-A1156.
    Ganapathy, V., B. Karunagaran & S.-W. Rhee (2010) Improved performance of dye-sensitized solar cells with TiO2/alumina core-shell formation using atomic layer deposition. Journal of Power Sources, 195, 5138-5143.
    Geiger, T., S. Kuster, J.-H. Yum, S.-J. Moon, M. K. Nazeeruddin, M. Grätzel & F. Nüesch (2009) Molecular Design of Unsymmetrical Squaraine Dyes for High Efficiency Conversion of Low Energy Photons into Electrons Using TiO2 Nanocrystalline Films. Advanced Functional Materials, 19, 2720-2727.
    Guo, M., P. Diao, Y.-J. Ren, F. Meng, H. Tian & S.-M. Cai (2005) Photoelectrochemical studies of nanocrystalline TiO2 co-sensitized by novel cyanine dyes. Solar Energy Materials and Solar Cells, 88, 23-35.
    Hagfeldt, A. & M. Grätzel (2000) Molecular Photovoltaics. Accounts of Chemical Research, 33, 269-277.
    Hara, K., T. Horiguchi, T. Kinoshita, K. Sayama, H. Sugihara & H. Arakawa (2000) Highly efficient photon-to-electron conversion with mercurochrome-sensitized nanoporous oxide semiconductor solar cells. Solar Energy Materials and Solar Cells, 64, 115-134.
    Hara, K., M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga, K. Sayama & H. Arakawa (2003) Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New Journal of Chemistry, 27, 783-785.
    Horiuchi, T., H. Miura, K. Sumioka & S. Uchida (2004) High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes. Journal of the American Chemical Society, 126, 12218-12219.
    Ito, S., H. Miura, S. Uchida, M. Takata, K. Sumioka, P. Liska, P. Comte, P. Pechy & M. Gratzel (2008) High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. Chemical Communications, 5194-5196.
    Ito, S., S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet, P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura, S. Uchida & M. Grätzel (2006) High-Efficiency Organic-Dye- Sensitized Solar Cells Controlled by Nanocrystalline-TiO2 Electrode Thickness. Advanced Materials, 18, 1202-1205.
    Jana, A. K. & B. B. Bhowmik (1999) Enhancement in power output of solar cells consisting of mixed dyes. Journal of Photochemistry and Photobiology A: Chemistry, 122, 53-56.
    Jung, H. S., J.-K. Lee, M. Nastasi, S.-W. Lee, J.-Y. Kim, J.-S. Park, K. S. Hong & H. Shin (2005) Preparation of Nanoporous MgO-Coated TiO2 Nanoparticles and Their Application to the Electrode of Dye-Sensitized Solar Cells. Langmuir, 21, 10332-10335.
    K. Nazeeruddin, M., P. Pechy & M. Gratzel (1997) Efficient panchromatic sensitization of nanocrystalline TiO2 films by a black dye based on a trithiocyanato-ruthenium complex. Chemical Communications, 1705-1706.
    Kalyanasundaram, K. 2010. Dye-Sensitized Solar Cells. Switzerland: EPFL Press.
    Kalyanasundaram, K. & M. Grätzel (1998) Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordination Chemistry Reviews, 177, 347-414.
    Kang, M. G., N.-G. Park, K. S. Ryu, S. H. Chang & K.-J. Kim (2006) A 4.2% efficient flexible dye-sensitized TiO2 solar cells using stainless steel substrate. Solar Energy Materials and Solar Cells, 90, 574-581.
    Kay, A. & M. Grätzel (2002) Dye-Sensitized Core−Shell Nanocrystals:  Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide. Chemistry of Materials, 14, 2930-2935.
    Kim, J.-Y., S. H. Kang, H. S. Kim & Y.-E. Sung (2009a) Preparation of Highly Ordered Mesoporous Al2O3/TiO2 and Its Application in Dye-Sensitized Solar Cells. Langmuir, 26, 2864-2870.
    Kim, J., S. Lee, J. Noh, H. Jung & K. Hong (2009b) Enhanced photovoltaic properties of overlayer-coated nanocrystalline TiO2 dye-sensitized solar cells (DSSCs). Journal of Electroceramics, 23, 422-425-425.
    Kuang, D., J. r. m. Brillet, P. Chen, M. Takata, S. Uchida, H. Miura, K. Sumioka, S. M. Zakeeruddin & M. Grätzel (2008) Application of Highly Ordered TiO2 Nanotube Arrays in Flexible Dye-Sensitized Solar Cells. ACS Nano, 2, 1113-1116.
    Kuang, D., P. Walter, F. Nüesch, S. Kim, J. Ko, P. Comte, S. M. Zakeeruddin, M. K. Nazeeruddin & M. Grätzel (2007) Co-sensitization of Organic Dyes for Efficient Ionic Liquid Electrolyte-Based Dye-Sensitized Solar Cells. Langmuir, 23, 10906-10909.
    Kumara, G. R. A., S. Kaneko, M. Okuya, B. Onwona-Agyeman, A. Konno & K. Tennakone (2006) Shiso leaf pigments for dye-sensitized solid-state solar cell. Solar Energy Materials and Solar Cells, 90, 1220-1226.
    Lee, S., J. Young Kim, K. Sun Hong, H. Suk Jung, J.-K. Lee & H. Shin (2006) Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode. Solar Energy Materials and Solar Cells, 90, 2405-2412.
    Lee, Y.-L. & Y.-S. Lo (2009) Highly Efficient Quantum-Dot-Sensitized Solar Cell Based on Co-Sensitization of CdS/CdSe. Advanced Functional Materials, 19, 604-609.
    Luo, F., L. Wang, B. Ma & Y. Qiu (2008) Post-modification using aluminum isopropoxide after dye-sensitization for improved performance and stability of quasi-solid-state solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 197, 375-381.
    Ma, B., R. Gao, L. Wang, F. Luo, C. Zhan, J. Li & Y. Qiu (2009) Alternating assembly structure of the same dye and modification material in quasi-solid state dye-sensitized solar cell. Journal of Photochemistry and Photobiology A: Chemistry, 202, 33-38.
    Ma, B., R. Gao, L. Wang, Y. Zhu, Y. Shi, Y. Geng, H. Dong & Y. Qiu (2010) Recent progress in interface modification for dye-sensitized solar cells. SCIENCE CHINA Chemistry, 53, 1669-1678-1678.
    Nazeeruddin, M. K., F. De Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru & M. Grätzel (2005) Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. Journal of the American Chemical Society, 127, 16835-16847.
    Nazeeruddin, M. K., R. Humphry-Baker, P. Liska & M. Grätzel (2003) Investigation of Sensitizer Adsorption and the Influence of Protons on Current and Voltage of a Dye-Sensitized Nanocrystalline TiO2 Solar Cell. The Journal of Physical Chemistry B, 107, 8981-8987.
    Nazeeruddin, M. K., A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos & M. Graetzel (1993) Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 115, 6382-6390.
    Nazeeruddin, M. K., S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, C.-H. Fischer & M. Grätzel (1999) Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania. Inorganic Chemistry, 38, 6298-6305.
    O'Regan, B. & M. Gratzel (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737-740.
    O'Regan, B. C., S. Scully, A. C. Mayer, E. Palomares & J. Durrant (2005) The Effect of Al2O3 Barrier Layers in TiO2/Dye/CuSCN Photovoltaic Cells Explored by Recombination and DOS Characterization Using Transient Photovoltage Measurements. The Journal of Physical Chemistry B, 109, 4616-4623.
    Ooyama, Y. & Y. Harima (2009) Molecular Designs and Syntheses of Organic Dyes for Dye-Sensitized Solar Cells. European Journal of Organic Chemistry, 2009, 2903-2934.
    Palomares, E., J. N. Clifford, S. A. Haque, T. Lutz & J. R. Durrant (2002a) Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers. Journal of the American Chemical Society, 125, 475-482.
    Palomares, E., J. N. Clifford, S. A. Haque, T. Lutz & J. R. Durrant (2002b) Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chemical Communications, 1464-1465.
    Park, H., D.-J. Yang, H.-G. Kim, S.-J. Cho, S.-C. Yang, H. Lee & W.-Y. Choi (2009) Fabrication of MgO-coated TiO2 nanotubes and application to dye-sensitized solar cells. Journal of Electroceramics, 23, 146-149-149.
    Perera, V. P. S., P. K. D. D. P. Pitigala, M. K. I. Senevirathne & K. Tennakone (2005) A solar cell sensitized with three different dyes. Solar Energy Materials and Solar Cells, 85, 91-98.
    Plass, R., S. Pelet, J. Krueger, M. Grätzel & U. Bach (2002) Quantum Dot Sensitization of Organic−Inorganic Hybrid Solar Cells. The Journal of Physical Chemistry B, 106, 7578-7580.
    Prasittichai, C. & J. T. Hupp (2010) Surface Modification of SnO2 Photoelectrodes in Dye-Sensitized Solar Cells: Significant Improvements in Photovoltage via Al2O3 Atomic Layer Deposition. The Journal of Physical Chemistry Letters, 1, 1611-1615.
    Sayama, K., S. Tsukagoshi, T. Mori, K. Hara, Y. Ohga, A. Shinpou, Y. Abe, S. Suga & H. Arakawa (2003) Efficient sensitization of nanocrystalline TiO2 films with cyanine and merocyanine organic dyes. Solar Energy Materials and Solar Cells, 80, 47-71.
    Singhanu, N. 2010. Efficiency Enhancement in Dye-Sensitized Solar Cells by Utilization of Al2O3 Layers. In Dept. of Chemical Engineering, 120. Tainan: National Cheng Kung University.
    Sirimanne, P. M. & V. P. S. Perera (2008) Progress in dye-sensitized solid state solar cells. physica status solidi (b), 245, 1828-1833.
    Taguchi, T., X.-t. Zhang, I. Sutanto, K.-i. Tokuhiro, T. N. Rao, H. Watanabe, T. Nakamori, M. Uragami & A. Fujishima (2003) Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film. Chemical Communications, 2480-2481.
    Tennakone, K., K. P. Hewaparakkrama, M. Dewasurendra, A. H. Jayatissa & L. K. Weerasena (1988) Dye-sensitised solid-state photovoltaic cells. Semiconductor Science and Technology, 3, 382.
    Tennakone, K., G. R. R. A. Kumara, I. R. M. Kottegoda, K. G. U. Wijayantha & V. P. S. Perera (1998) A solid-state photovoltaic cell sensitized with a ruthenium bipyridyl complex. Journal of Physics D: Applied Physics, 31, 1492.
    Thavasi, V., V. Renugopalakrishnan, R. Jose & S. Ramakrishna (2009) Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Materials Science and Engineering: R: Reports, 63, 81-99.
    Ushiroda, S., N. Ruzycki, Y. Lu, M. T. Spitler & B. A. Parkinson (2005) Dye Sensitization of the Anatase (101) Crystal Surface by a Series of Dicarboxylated Thiacyanine Dyes. Journal of the American Chemical Society, 127, 5158-5168.
    Wang, P., S. M. Zakeeruddin, R. Humphry-Baker, J. E. Moser & M. Grätzel (2003) Molecular-Scale Interface Engineering of TiO2 Nanocrystals: Improve the Efficiency and Stability of Dye-Sensitized Solar Cells. Advanced Materials, 15, 2101-2104.
    Wang, X.-F., J. Xiang, P. Wang, Y. Koyama, S. Yanagida, Y. Wada, K. Hamada, S.-i. Sasaki & H. Tamiaki (2005) Dye-sensitized solar cells using a chlorophyll a derivative as the sensitizer and carotenoids having different conjugation lengths as redox spacers. Chemical Physics Letters, 408, 409-414.
    Wang, Z.-S., Y. Cui, Y. Dan-oh, C. Kasada, A. Shinpo & K. Hara (2007) Thiophene-Functionalized Coumarin Dye for Efficient Dye-Sensitized Solar Cells:  Electron Lifetime Improved by Coadsorption of Deoxycholic Acid. The Journal of Physical Chemistry C, 111, 7224-7230.
    Wang, Z.-S., C.-H. Huang, Y.-Y. Huang, Y.-J. Hou, P.-H. Xie, B.-W. Zhang & H.-M. Cheng (2001) A Highly Efficient Solar Cell Made from a Dye-Modified ZnO-Covered TiO2 Nanoporous Electrode. Chemistry of Materials, 13, 678-682.
    Wang, Z.-S., M. Yanagida, K. Sayama & H. Sugihara (2006) Electronic-Insulating Coating of CaCO3 on TiO2 Electrode in Dye-Sensitized Solar Cells:  Improvement of Electron Lifetime and Efficiency. Chemistry of Materials, 18, 2912-2916.
    Wongcharee, K., V. Meeyoo & S. Chavadej (2007) Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Solar Energy Materials and Solar Cells, 91, 566-571.
    Yagi, S. & H. Nakazumi. 2008. Squarylium Dyes and Related Compounds. In Heterocyclic Polymethine Dyes, ed. L. Strekowski, 133-181-181. Springer Berlin / Heidelberg.
    Yoshida, T., M. Iwaya, H. Ando, T. Oekermann, K. Nonomura, D. Schlettwein, D. Wohrle & H. Minoura (2004) Improved photoelectrochemical performance of electrodeposited ZnO/EosinY hybrid thin films by dye re-adsorption. Chemical Communications, 400-401.
    Yum, J.-H., S.-R. Jang, P. Walter, T. Geiger, F. Nuesch, S. Kim, J. Ko, M. Gratzel & M. K. Nazeeruddin (2007) Efficient co-sensitization of nanocrystalline TiO2 films by organic sensitizers. Chemical Communications, 4680-4682.
    Zhang, D., T. Yoshida & H. Minoura (2002) Low Temperature Synthesis of Porous Nanocrystalline TiO2 Thick Film for Dye-Sensitized Solar Cells by Hydrothermal Crystallization. Chemistry Letters, 31, 874-875.
    Zhang, Z., B. Zhou, W. Ge, B. Xiong, Q. Zheng & W. Cai (2005) Charge recombination in dye-sensitized nanoporous TiO2 solar cell. Chinese Science Bulletin, 50, 2408-2412-2412.
    Zhao, W., Y. Jun Hou, X. Song Wang, B. Wen Zhang, Y. Cao, R. Yang, W. Bo Wang & X. Rui Xiao (1999) Study on squarylium cyanine dyes for photoelectric conversion. Solar Energy Materials and Solar Cells, 58, 173-183.
    Zuo, P., C. Li, Y.-S. Wu, X.-C. Ai, X.-S. Wang, B.-W. Zhang & J.-P. Zhang (2006) Mechanism of squarylium cyanine and Ru(dcbpy)2(NCS)2 co-sensitization of colloidal TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 183, 138-145.

    下載圖示 校內:2013-07-27公開
    校外:2013-07-27公開
    QR CODE