簡易檢索 / 詳目顯示

研究生: 洪振益
Hong, Jhen-yi
論文名稱: 溫度效應對帶電陰陽離子液胞釋放行為的影響
Effect of Temperature on Release Behavior of Charged Catanionic Vesicles
指導教授: 楊毓民
Yang, Yu-Min
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 144
中文關鍵詞: 包覆效率脂質體陰陽體(陰陽離子液胞)溫度效應釋放行為陰陽離子界面活性劑磷脂質
外文關鍵詞: phospholipid, catanionic surfactant, liposome, catansome (catanionic vesicle), release behavior, temperature effect, encapsulation efficiency
相關次數: 點閱:180下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文首先由單鏈的陰、陽離子界面活性劑製備雙鏈的DTMA-DS (dodecyltrimethylammonium-dodecylsulfate)、TTMA-DS (tetradecyltrimethylammonium- dodecylsulfate)與HTMA-DS (hexadecyltrimethylammonium-dodecylsulfate)三種陰陽離子界面活性劑(catanionic surfactant),連同PL-90磷脂質分別做為液胞的材料,並採用升溫半自發製程,嘗試製備穩定的陰陽體(陰陽離子液胞)與脂質體。由實驗結果顯示此製程並不適合製備脂質體,但透過膽固醇與離子型界劑的添加,DTMA-DS與HTMA-DS可以製備出穩定的陰陽離子液胞。本研究並進一步探討在純水與緩衝溶液環境下,液胞組成對界面電位、初始粒徑、物理穩定性、與溶液稀釋的影響。
    此外,亦以螢光劑CF (5[6] -carboxyfluorescein)做為探測分子,探討陰陽體的包覆效率與釋放行為。實驗結果顯示,只有帶負電的陰陽體可以包覆CF,帶正電的陰陽體則會與帶負電的CF作用導致沉澱與相分離。且從管柱分離過程的結果發現帶負電的HTMA-DS陰陽體通過管柱後會呈現相分離的現象。此一現象透過界面電位與螢光分析顯示可能是SDS分子無法緊密地嵌HTMA-DS的雙層殼膜之間的緣故所造成。帶負電的DTMA-DS陰陽體經過管柱分離後仍有良好的穩定性,各組成陰陽體的包覆效率約在0.65~0.7% 之間。此外,實驗結果也顯示帶負電的DTMA-DS陰陽體在常溫下釋放速率非常小,但隨著溫度的提升而增大,且在50℃前後有很明顯的改變。此一結果可望提供陰陽體作為藥物傳輸載體溫控釋放的可行性。

    The phospholipid PL-90 and ion-pair amphiphiles (HTMA-DS, TTMA-DS, and DTMA-DS), which are double-chained surfactants prepared through precipitation by mixing cationic and anionic single-chained surfactants, were used as the main materials to form liposomes and catanionic vesicles, respectively, by a semispontaneous process at 70 ℃. The experimental results showed that this method is not applicable to the preparation of liposome even by the addition of cholesterol. On the other hand, positively and negatively charged catanionic vesicles can be successfully prepared by using HTMA-DS and DTMA-DS with the addition of cholesterol and various amounts of single-chained ionic surfactants. Effects of composition on the size, zeta-potential, and physical stability of the ensuring catanionic vesicles in water and buffer solutions were systematically studied.
    Furthermore, the encapsulation and release behavior of the ensuring catanionic vesicles were also investigated by using 5(6) -carboxyfluorescein (CF) as fluorescent probe molecules. The experimental results showed that only negatively charged catanionic vesicles are able to encapsulate CF molecules. However, CF molecules were unable to be encapsulated by positively charged catanionic vesicle. This is due to the precipitation resulted from the electrostatic intertation between the oppositely charged CF molecules and catanionic vesicles. Furthermore, negatively charged HTMA-DS catanionic vesicles can’t survive the size exclusion chromatography during separation process. On the evidence of zeta-potential and fluorescence measurements, this may be due to the SDS molecules without incorporation intact between HTMA-DS molecules in the bilayer structure of vesicles. Encapsulation efficiencies around 0.65~0.7% were determined and effect of temperature on release rate was studied for negatively charged DTMA-DS catanionic vesicles. The release rates were found to increase with the increase of temperature and there existed a drastic change of release rate around 50 ℃. This may find their potential use in temperature-controlled drug release by using catanionic vesicle as carriers.

    摘 要................................................ I Abstract.............................................III 誌 謝.................................................V 總目錄................................................VI 表目錄.................................................X 圖目錄...............................................XII 符號說明.............................................XXI 第一章 緒論............................................1 1-1 前言...............................................1 1-2 研究動機與目的 .....................................9 第二章 文獻回顧.......................................10 2-1 離子對雙親分子....................................10 2-2 陰陽離子液胞的形成................................12 2-3 帶電液胞..........................................16 2-4 鹽類的影響........................................18 2-5 液胞的物理穩定性..................................20 2-7 界面活性劑對液胞的破壞效應........................25 2-8 液胞的包覆行為 ....................................27 2-9 液胞的釋放行為...................................32 2-10 觸發釋放.........................................35 第三章 實驗...........................................37 3-1 實驗藥品..........................................38 3-2 實驗儀器及裝置 ....................................39 3-2-1 均質機..........................................39 3-2-2 雷射光散射法粒徑/界面電位分析儀.................41 3-2-3 凝膠層析........................................45 3-2-4 螢光光譜儀......................................46 3-2-5穿透式電子顯微鏡.................................48 3-2-6 精密烘箱........................................49 3-3 實驗方法..........................................50 3-3-1 陰陽離子界面活性劑(IPA)的製備...................50 3-3-2 脂質體與陰陽體的製備............................51 3-3-3 粒徑分布、界面電位與液胞存活期的測量............52 3-3-4 穿透式電子顯微鏡的分析..........................52 3-3-5 陰陽體的包覆/釋放實驗流程.......................53 第四章 結果與討論.....................................58 4-1 本製程的可行性與可應用的範圍......................58 4-1-1 脂質體在此製程製備之可行性......................58 4-1-2 陰陽體在此製程製備之可行性......................60 4-1-2-1 IPA系統......................................60 4-1-2-2 IPA+膽固醇系統...............................60 4-1-2-3 IPA+膽固醇+單鏈離子型界面活性劑系統..........62 4-1-2-4 陰陽體在純水中製備之穩定性....................81 4-1-2-5 陰陽體在純水中製備之界面電位..................82 4-1-2-6 陰陽體的TEM影像...............................83 4-2 陰陽體在緩衝溶液環境下之界面電位與稀釋的影響......86 4-2-1 陰陽體在緩衝溶液環境下之粒徑大小與稀釋的影響....92 4-2-2 陰陽體在緩衝溶液環境下之穩定性與稀釋後的穩定性..93 4-3 包覆藥物對陰陽體的影響............................94 4-3-1 包覆藥物對陰陽體的電性之影響....................96 4-3-2 通過管柱分離前後對包覆CF之帶負電陰陽體之影響....96 4-3-2-1 CF對帶負電HTMA-DS陰陽體在粒徑特性之影響......96 4-3-2-2 CF對帶負電HTMA-DS陰陽體在界面電位之影響......97 4-3-2-3 CF對帶負電DTMA-DS陰陽體在粒徑特性之影響......99 4-3-2-4 CF對帶負電DTMA-DS陰陽體在界面電位之影響......99 4-4 陰陽體的包覆行為................................103 4-4-1 凝膠層析之藥物質量平衡.........................103 4-4-2 陰陽體的包覆行為...............................106 4-5 陰陽體的釋放行為................................107 4-5-1 陰陽體在常溫下的釋放行為.......................108 4-5-2 陰陽體在50℃與40℃的釋放行為...................110 4-5-3 陰陽體在60℃與70℃下的釋放行為.................114 4-5-4 陰陽體介在室溫與70℃下的釋放行為...............118 4-5-5 陰陽體溫度控制釋放.............................119 5-1 結論 ............................................120 5-2 建議 ............................................124 參考文獻.............................................125 自述.................................................144

    Ahmad, I., Longenecker, M., Samuel, J. and Allen, T. M., “Antibody-targeted delivery of doxorubicin entrapped in sterically stabilized liposomes can eradicate lung cancer in mice,” Cancer Research 55, 1484-1487, 1993.
    Alonso, J. M., Llhcer, C., Vila, A.O., Figueruelo, J. E. and Molina, F. J., “Effect of the osmotic conditions on the value of ζ potential of DMPC multilamellar liposomes,” Colloids and Surfaces A: Physicochem. Eng. Aspects 95, 11-14, 1995.
    Andresen, T. L., Davidsen, J., Begtrup, M., Mouritsen, O. G. and Jorgensen, K., “Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming products,” J. Med. Chem. 47, 1694–1703, 2004.
    Andersson, M., Hammarstrom, L. and Edwards, K., “Effect of bilayer phase transitions on vesicle structure and its influence on the kinetics of viologen reduction,” Journal of Physical Chemistry 99, 14531-14538, 1995.
    Antonietti, M. and Főrter, S., “Vesicles and liposomes : A self-assembly principle beyond lipid, ” Adv. Mater. 15, 1323-1333, 2003.
    Apel-Paz, M., Doncel, G. F. and Vanderlick, T. K., “Impact of membrane cholesterol content on the resistance of vesicles to surfactant attack,” Langmuir 21, 9843-9849, 2005.
    Bhattacharya, S., De, S. and Subramanian, M., “Synthesis and vesicle formation from hybrid bolaphile/amphiphile ion-pairs. Evidence of membrane property modulation by molecular design,” J. Org. Chem. 63, 7640-7651, 1998.
    Bhattacharya, S. and Haldar, J., “Interactions between cholesterol and lipids in bilayer membranes. Role of lipid headgroup and hydrocarbon chain-backbone linkage,” Biochim. et Biophys. Acta 1467, 39-53, 2000.
    Bhattacharya, S. and Haldar, S., “Molecular design of surfactants to tailor its aggregation properties,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 205, 119-126, 2002.
    Bin, X. and Lipkowski, J., “Electrochemical and PM-IRRAS studies of the effect of cholesterol on the properties of the headgroup region of a DMPC bilayer supported at a Au(111) electrode,” J. Phys. Chem. B 110, 26430-26441, 2006.
    Blanzat, M., Perez, E., Rico-Latters, R., Prome, D., Prome, J. C. and Lattes, A., “New catanionic glycolipids. 1. Synthesis, characterization, and biological activity of double-chain and gemini catanionic analogues of galactosylceramide(galβ1cer),” Langmuir 15, 6163-6169, 1999.
    Borochov, “Phase behavior of mixtures of cholesterol and saturated phosphatidylglycerols,” Chemistry and Physics of Lipids 76, 85-92, 1995.
    Brasher, L. L., Herrington, K. L. and Kaler, E. W., “Electrostatic effects on the phase behavior of aqueous cetyltrimethylammonium bromide and sodium octyl sulfate mixtures with added sodium bromide,” Langmuir 11, 4267-4277, 1995.
    Brown, M. F., Thurmond, R. L.., Dodd, S. W., Otten, D. and Beyer, K., “Elastic deformation of membrane bilayers probed by deuterium NMR relaxation,” J. Am. Chem. Soc. 124, 8471-8484, 2002.
    Bucak, S., Robinson, B. H. and Fontana, A., “Kinetics of induced vesicle breakdown for cationic and catanionic systems,” Langmiur 18, 8288-8292, 2002.
    Caillet, C., Hebrant, M. and Tondre, C., “Sodium octyl sulfate/cetyltrimethylammonium bromide catanionic vesicles: Aggregate composition and probe encapsulation” Langmuir 16, 9099-9102, 2000.
    Carmona-Ribeiro, A. M. and Midmore, B. R., “Surface potential in charged synthetic amphiphile vesicles,” Journal of Physical Chemistry 96, 3542-3547, 1992.
    Cevc, G., “Hydration force and the interfacial structure of the polar surface,” J. Chem. SOC., Faraday Trans. 87, 2733-2739, 1991.
    Cevc, G., “Lipid vesicles and other colloids as drug carriers on the skin,” Advanced Drug Delivery Reviews 56, 675-711, 2004.
    Cevc, G. and Blume, G., “Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force,” Biochim. Biophys. Acta. 1104, 226-232, 1992.
    Chanturiya, A., Leikina, E., Zimmerberg, J. and Chernomordik, L. V., “Short-Chain Alcohols Promote an Early Stage of Membrane Hemifusion,” Biophysical J. 77, 2035-2045, 1999.
    Chien, C. L., Yeh, S. J., Yang, Y. M., Chang, C. H. and Maa. J. R., “Formation and encapsulation of catanionic vesicles,” J. Chin. Colloid & Interface Soc. 24, 31-45, 2002.
    Chung, M. H. and Chung, Y. C., “Polymerized ion pair amphiphile that shows remarkable enhancement in encapsulation efficiency and very slow release of fluorescent markers,” Colloids and Surfaces B: Biointerfaces 24, 111-121, 2002.
    Chung, M. H., Park, M. J., Chun, B. C. and Chung, Y. C., “Encapsulation and permeation properties of the polymerized ion pair amphiphile vesicle that has an additional carboxyl group on anionic chain,” Colloids and Surfaces B: Biointerfaces 28, 83-93, 2003.
    Chung, M. H., Park, C., Chun, B. C. and Chung, Y. C., “Polymerized ion pair amphiphile vesicles with pH-sensitive transformation and controlled release property,” Colloids and Surfaces B: Biointerfaces 34, 179-184, 2004.
    Chung, Y. C. and Regen, S. L., “Comparision of barrier properties of bilayers derived from an ion-paired amphiphile with those of a phosphatidylcholine analog,” Langmuir 8, 2843-2845, 1992.
    Chung, Y. C. and Regen, S. L., “Counterion control over the barrier properties of bilayers derived from double-chain ionic surfactants,” Langmuir 9, 1937-1939, 1993.
    Chung, Y. C. and Lee, H. J., “Ion-sensing property of an ion pair amphiphile,” Bull. Korean Chem. Soc. 20,16-18,1999.
    Chung, Y. C.,Lee, H. J. and Park, J. Y., “Bilayer properties of the multiple-chain ion-pair amphiphiles,” Bull. Korean Chem. Soc. 19, 1249-1252, 1998.
    Cuccovia, I. M., Feitosa, E., Chaimovich, H., Sepulveda, L. and Reed, W., “Size, electrophoretic mobility, and ion dissociation of vesicles prepared with synthetic amphiphiles,” Journal of Physical Chemistry 94, 3722-3725, 1990.
    Cullis, P. R., Hope, M. J., Bally,M. B., Madden, T.D. and Mayer, L. D., “Liposomes as pharmaceuticals,”in Liposomes from Biophysics to Therapeutics, M. J. Ostro, Ed., New York, NY: Marcel Dekker, 1987.
    Danoff, J. E., Wang, X., Tung, S.H., Sinkov, N. A., Kemme, A. M., Raghavan, S. R. and English, D. S., “Surfactant vesicles for high-efficiency capture and separation of charged organic solutes,” Langmuir 23, 8965-8971, 2007.
    Dayan, N. and Touitou E., “Carriers for skin delivery of trihexyphenidyl HCl:ethosomes vs. liposomes,” Biomaterials 21,1879-1885, 2000.
    Drummond, D. C., Zignani, M. and Leroux, J. C., “Current status of pH-sensitive liposomes in drug delivery,” Prog. Lipid Res. 39, 409–460, 2000.
    Ege, C., Ratajczak, M. K., Majewski, J., Kjaer, K. and Lee, K. Y., “Evidence for lipid/cholesterol ordering in model lipid membranes,” Biophysical Journal: Biophysical Letters, 1-3, 2006.
    El Maghraby, G.M.M., Williams, A.C. and Barry, B.W., “Interactions of surfactants (edge activators) and skin penetration enhancers with liposomes,” Int. J. Pharmaceutics 276, 143-161, 2004.
    Elsayed, M. M. A., Abdallah, O. Y., Naggar, V. F. and Khalafallah, N. M., “Deformable liposomes and ethosomes: Mechanism of enhanced skin delivery,” Int. J. Pharmaceutics 322, 60-66, 2006.
    Elsayed, M. M. A., Abdallah, O. Y., Naggar, V. F. and Khalafallah, N. M., “Lipid vesicles for skin delivery of drugs: Reviewing three decades of research,” Int. J. Pharmaceutics 322, 1-16, 2007.
    Evans, E. and Needham, D., “Physical properties of surfactant bilayer membranes: thermal transitions, elasticity, rigidity, cohesion and colloidal interactions”, J. Phys. Chem. 91, 4219-4228, 1987.
    Feitosa, E. and Brown, W., “Fragment and vesicles structures in sonicated dispersions of dioctadecyldimethylammonium bromide,” Langmuir 13, 4810-4816, 1997.
    Fischer, A., Hebrant, M. and Tondre, C., “Glucose encapsulation in catanionic vesicles and kinetic study of the entrapment/release processes in the sodium dodecyl bezene sulfonate/cetyltrimethylammonium tosylate/water system,” J. Colloid Interface Sci. 248,163-168, 2002.
    Fukuda, H., Kawata, K. and Okuda, H., “Bilayer-forming ion-pair amphiphiles from single-chain surfactants,” J. Am. Chem. Soc. 112,1635,1990.
    Fuller, G. F. and Shields, D., “Molecular basis of medical cell biology,” McGraw-Hill, New York, 1998.
    Garcia-Manyes, S., Oncins, G. and Sanz, G., “Effect of ion-binding and chemical phospholipid structure on the nanomechanics of lipid bilayers studied by force spectroscopy,” Biophysical J. 89, 1812-1826, 2005.
    Grasso, D., Subramaniam1, K., Butkus, M., Strevett, K. and Bergendah, J., “A review of non-DLVO interactions in environmental colloidal systems,” Re/Views in Environmental Science & Bio/Technology 1, 17-38, 2002.
    Guillaume, B. C. R., Yogev, D., and Fendler, J. H. “Twisted intramolecular charge-transfer emissions of fluorescence probes in didodecyldimethylammonium bromide, dioctadecyldimethylammonium bromide, and didodecyl phosphate vesicles undergoing fusion,” J. Phys. Chem. 95, 7489-7494, 1991.
    Hargeaves, W. R. and Deamer, D. W., “Liposomes from ionic,single chain amphiphiles,” Biochemistry 17,3759-3768, 1978.
    Heerklotz, H. and Tsamaloukas, A., “Gradual change or phase transition: characterizing fluid lipid-cholesterol membranes on the basis of thermal volume changes,” Biophysical J. 91, 600-607, 2006.
    Hirano K. and Fukuda, H., “Polymerizable ion-paired amphiphiles,” Langmuir 7, 1045-1047, 1991.
    Huang, J. B. and Zhao, G. X., “Formation and coexistence of the micelles and vesicles in mixed solution of cationic and anionic surfactant,” Colloid and Polymer Science 273, 156-164, 1995.
    Huang, S.-L. and MacDonald, R. C., “Acoustically active liposomes for drug encapsulation and ultrasound-triggered release,” Biochim. Biophys. Acta 1665, 134–141, 2004.
    Hung, W. C., Lee, M. T., Chen, F. Y. and Huang, H. W., “The condensing effect of cholesterol in lipid bilayers,” Biophysical J. 92, 3960-3967, 2007.
    Imamura, H., Tsuchiya, K., Kondo, Y., Yoshino, N., Ohkuba, T., Sakai, H. and Abe, M., “Phase behavior of mixed solutions of a catanionic surfactant with a ferrocenyl group and an anionic surfactant:surface chemical and electrochemical approaches,” J. Oleo Sci. 54, 125-134, 2005.
    Israelachvili, J. N., “Intermolecular and surface forces,” 2nd Ed., Academic, New York, 1992.
    Jesorka A. and Orwar O., “Liposomes: technologies and analytical applications,” Annu. Rev. Anal. Chem. 27, 1-32, 2008.
    Jones, M. N., “The Surface properties of phospholipid liposome systems and their characterization,” Advances in Colloid and Interface Science 54, 93-128, 1995.
    Jubeh, T. T., Barenholz, Y. and Rubinstein, A., “Differential adhesion of normal and inflamed rat colonic mucosa by charged liposomes,” Pharmaceutical Research 21, 447-453, 2004.
    Kaler, E. W., Murthy, A. K., Rodriguez, B. E. and Zasadzinski, J. A. M., “Spontaneous vesicle formation from aqueous mixtures of single-tailed surfactants,” Science 245, 1371-1374, 1989.
    Kirjavainen, M., Urtti, A., Valjakka-Koskela, R., Kiesvaara, J. and Mönkkönen, J., “Liposome - skin interactions and their effects on the skin permeation of drugs,” Euro. J. Pharmaceutical Sci. 7, 279-286, 1999.
    Kondo, Y., Uchiyama, H., Yoshino, N., Nishiyama, K. and Abe, M., “Spontaneous vesicles formation from aqueous solutions of didodecyldimethylammonium bromide and sodium dodecyl sulfate mixtures,” Langmuir 11, 2380-2384, 1995.
    Kucerka, N., Pencer1, J., Nieh, M. P. and Katsara, J., “Influence of cholesterol on the bilayer properties of monounsaturated phosphatidylcholine unilamellar vesicles,” Eur. Phys. J. E 23, 247-254, 2007.
    Kwon, K. O., Kim, M. J., Abe, M., Ishinomori, T. and Ogino, K., “Thermotropic behavior of a phospholipid bilayer interacting with metal ions,” Langmuir 10, 1415-1420, 1994.
    Lasic, D. D., “Liposomes: from physics to applications,” Elsevier, New York, 265-318, 1993.
    Lasic, D. D., “Liposomes in gene delivery,” CRC Press, New York, 1997.
    Lasic, D. D., “The mechanism of vesicle formation,” Biochem. J. 256, 1-11, 1988.
    Lindner, L. H., Eichhorn, M. E., Eibl, H., Teichert, N., Schmitt-Sody, M., Issels, R. D. and Dellian, M., “Novel temperature-sensitive liposomes with prolonged circulation time,” Clin. Cancer Res. 10, 2168–2178, 2004.
    Lopez-Garcia, F., Villalain, J. and Gomez-Fernandez, J. C., “Effect of sphingosine and stearylamine on the interaction of phosphatidylserine with calcium. A study using DSC, FT-IR and Ca2+-binding,” Biochimica et Biophysica Acta 1236, 279-288, 1995.
    L´opez-Pinto, J. M., Gonz´alez-Rodr´ıguez, M.L. and Rabasco, A.M., “Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes,” Int. J. Pharm. 298, 1-12, 2005.
    L´opez, O., Mazaa, A. D. D., Codercha, L., L´opez- Iglesiasb, C., Wehrlic, C. E. and Parra, J. L., “Direct formation of mixed micelles in the solubilization of phospholipid liposomes by Triton X-100,” FEBS Letters 426 , 314-318, 1998.
    Marques, E. F., Brito, R. O., Wang, Y. and Silva, B. F. B., “Thermotropic phase behavior of triple-chained catanionic surfactants with varying headgroup chemistry,” Journal of Colloid and Interface Science 294, 240-247, 2006.
    Marques, E. F., Regev, O., Khan, A., and Lindman, B., “Self-organization of double-chained and pseudodouble-chained surfactants: counterion and geometry effects,” Advances in Colloid and Interface Science 100, 83-104, 2003.
    Matsumura, H., Watanabe, K., and Furusawa, K. “Flocculation behavior of egg phosphatidylcholine liposomes caused by Ca2+ ions,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 98, 175-184, 1995.
    McIntosh, T. J., Magid, A. D. and. Simons, S. A., “Cholesterol modifies the short-range repulsive interactions between phosphatidylcholine membranes,” Biochemistry 28, 17-25, 1989.
    McLaughlin, A., Vaio, W. K., Wilson, G.. T. and McLaughlin, S., “Dimethonium, a divalent cation that exerts only a screening effect on the electrostatic potential”, J. Membrane Biol. 76, 183-193, 1983.
    McMullen, T. P. W., Lewis, N. A. H. and McElhaney, R. N., “Differential scanning calorimetric study of the effect of cholesterol on the thermotropic phase behavior of a homologous series of linear saturated phosphatidylcholines,” Biochemistry 32, 516-522, 1993.
    McMullen, T. P. W., Lewis, R. N. A. H. and McElhaney, R. N., “Differential scanning calorimetric and fourier transform infrared spectroscopic studies of the effects of cholesterol on the thermotropic phase behavior and organization of a homologous series of linear saturated phosphatidylserine bilayer membranes,” Biophysical Journal 79, 2056-2065, 2000.
    Meers, P., “Enzyme-activated targeting of liposomes,” Adv. Drug Delivery Rev. 53, 265–272, 2001.
    Mills, J. K. and Needham, D., “Lysolipid incorporation in dipalmitoylphosphatidylcholine bilayer membranes enhances the ion permeability and drug release rates at the membrane phase transition,” Biochim. Biophys. Acta. 1716, 77-96, 2005.
    Mizoguchi, H. and Hara, S., “Effect of fatty acid saturation in membrane lipid bilayers on simple diffusion in the presence of ethanol at high concentrations,” J. Fermentation and Bioenfgineering 81, 406-411, 1996.
    Mueller, A., Bondurant, B. and O’Brien, D. F., “Visiblelight-stimulated destabilization of PEG-liposomes,” Macromolecules 33, 4799–4804, 2000.
    Needham, D. and Dewhirst, M. W., “The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors,” Adv. Drug Delivery Rev. 53, 285–305, 2001.
    New, R. R. C.(Ed.), “Liposomes: A practical approach,” Oxford University Press, New York, 1990.
    Panda, A. K., Possmayer, F., Petersen, N. O., Nag, K. and Moulik, S. P., “Physico-chemical studies on mixed oppositely charged surfactants: their uses in the preparation of surfactant ion selective membrane and monolayer behavior at the air water interface,” Colloids and Surfaces A: Physicochemical and Engineering Aspects 264, 106-113, 2005.
    Petrache, H. I., Zemb, T., Belloni, L. and Parsegian, V. A., “Salt screening and specific ion adsorption determine neutral-lipid membrane interactions,” PNAS 103, 7982-7987, 2006.
    Ponce, A. M., Wright, A., Dewhirst, M. W. and Needham, D., “Targeted bioavailability of drugs by triggered release from liposomes,” Future Lipidol. 1(1), 25–34, 2006.
    Robinson, B. H. and Rogerson, M., “Vesicles,” chap.3 in Handbook of applied surface and colloid chemistry, Holmberg, K. Ed.,John Wiley and Sons, New York, 2001.
    Ròg, T. and Pasenkiewicz-Gierula, M., “Cholesterol effects on the phospholipid condensation and packing in the bilayer: a molecular simulation study,” FEBS Letters 502, 68-71, 2001.
    Ròg, T. and Pasenkiewicz-Gierula, M., “Cholesterol effects on a mixed-chain phosphatidylcholine bilayer:a molecular dynamics simulation study,” Biochimie 88, 449-460, 2006.
    Rosoff, M.( Ed.), “Vesicles,” Marcel Dekker, New York, 1996.
    Sabìn, J., Prieto1, G., Ruso, J. M., Hidalgo-Alvarez, R. and Sarmientol, F., “Size and stability of liposomes: A possible role of hydration and osmotic forces,” Eur. Phys. J. E 20, 401-408, 2006.
    Sakai, H., Matsumura, A., Yokoyama, S., Saji, T. and Abe, M., ”Photochemical switching of vesicle formation using an azobenzene-modified surfactant,”J. Phys. Chem. B 103, 10737-10740, 1999.
    Šegota, S. and Težak, Ð., “Spontaneous formation of vesicles,” Advances in Colloid and Interface Science 121, 51-75, 2006.
    Shaw, D. J., “Colloid and Surface Chemistry,” Butterworth-Heinemann, London, 156, 1980.
    Soussan, E., Cassel, S., Blanzat, M. and Rico-Lattes, I., “Drug delivery by soft matter: matrix and vesicular carriers,” Angew. Chem. Int. Ed. 48, 274-288, 2009.
    Soussan, E., Mille, C., Blanzat, M., Bordat, P. and Rico-Lattes, I., “Sugar-derived tricatenar catanionic surfactant: synthesis, self-assembly properties, and hydrophilic probe encapsulation by vesicles,” Langmuir 24, 2326-2330, 2008.
    Stokes, R. J. and Evans, D. F., “Fundamentals of Interfacial Engineering,” Wiley-VCH, Inc., New York, 1997.
    Teixeira, C. V., Blanzat, M., Koetz, J., Rico-Lattes, I. and Brezesinski, G., “In-plane miscibility and mixed bilayer microstructure in mixtures of catanionic glycolipids and zwitterionic phospholipids,” Biochimica et Biophysica Acta 1758, 1797-1808, 2006.
    Tomasic, V., Stefanic, I. and Filipovic-Vincekovic, N., “Adsorption, association and precipitation in hexadecyltrimethylammonium bromide/sodium dodecyl sulfate mixtures,” Colloid and Polymer Science 277, 153-163, 1999.
    Tondre, C. and Caillet, C., “Properties of the amphiphilic films in mixed cationic/anionic vesicles: a comprehensive view from a literature analysis,” Advances in Colloid and Interface Science 93, 115-134, 2001.
    Torchilin, V. P., “Recent advances with liposomes as pharmaceutical carriers,” Nature Reviews Drug Discovery 4, 145-160, 2005.
    Touitou, E., Dayan, N., Bergelson, L., Godin, B. and Eliaz, M., “Ethosomes – novel vesicular carriers for enhanced delivery:characterization and skin penetration properties,” J. Control. Rel. 65, 403-418, 2000.
    Trommer, H. and Neubert, R. H. H., “Overcoming the stratum corneum: the modulation of skin penetration,” Skin Pharmacology and Physiology 19, 106-121, 2006.
    Tseng, L. P., Liang, H. J., Chung, T. W., Huang, Y. Y. and Liu, D. Z., “Liposomes incorporated with cholesterol for drug release triggered by magnetic field,” J. Medical and Biological Engineering 27, 29-34, 2007.
    Tsuruta, L. R. and Carmona-Ribeiro, A. M., “Counterion effects on colloids stability of cationic vesicles and bilayer-covered polystyrene microspheres,” Journal of Physical Chemistry 100, 7130-7134, 1996.
    Vautrin, C., Zemb, T., Schneider, M. and Tanaka, M., “Balance of pH and ionic strength influences on chain melting transition in catanionic vesicles,” Journal of Physical Chemistry B 108, 7986-7991, 2004.
    Virden, J. W. and Berg, J. C., “NaCl-induced aggregation of dipalmitoylphosphatidylglycerol small unilamellar vesicles with varying amounts of incorporated cholesterol,” Langmuir 8, 1532-1537, 1992.
    Wang, C. Z., Tang, S. H., Huang, J. B., Zhang, X. R. and Fu, H. L., “Transformation from precipitates to vesicles in mixed cationic and anionic surfactant systems”, Colloid Polym. Sci. 280, 770-774, 2002.
    Walker S. A. and Zasadzinski, A. J., “Electrostatic control of spontaneous vesicle aggregation,” Langmuir 13, 5076-5081, 1997.
    Walz, J. Y. and Ruckenstein, E., “Comparison of the van der waals andundulation interactions between uncharged lipid bilayers,” J. Phys. Chem. B 103, 7461-7468, 1999.
    Weinstein, J N., Ralston, E., Leserman, L. D., Klausner, R D., Dragsten, P., Henkart, P. and Blumenthal, R., “Self-quenching of carboxyfluorescein: uses in studying liposome stability and liposome-cell interaction,” in Liposome TechnologyL Targeted Drug Delivery and Biological Interaction, G. Gregoriadis, Ed., CRC, Boca Raton, 1984.
    Weinstein, J N., Yoshikami, S., Henkat, P., Blumenthal, R. and Hagins, W. A., “Liposome-cell interaction: transfer and intracellular release of a trapped fluorescent marker,” Science 195, 489-492, 1977.
    Wu, K. C., Huang, Z. L., Yang, Y. M., Chang, C. H. and Chou, T. H., “Enhancement of catansome dormation by means of cosolvent effect: Semi-spontaneous preparation method,” Colloids and Surfaces A: Physicochem. Eng. Aspects 302, 599-607, 2007.
    Yamauchi, M., Tsutsumi, K., Masayuki, A., Yoichi, U., Nakakura, M. and Aoki, N., “Release of drugs from liposomes varies with particle size,” Biol. Pharm. Bull. 30, 963-966, 2007.
    Yang Y. M., Wu, K. C., Huang, Z. L. and Chang, C. H., “On the stability of liposomes and catansomes in aqueous alcohol solutions,” Langmuir 24, 1695-1700, 2008.
    Yokoyama, S., Inagaki, A., Imura, T., Ohkubo, T., Tsubaki, N., Sakai, H. and Abe, M., “Membrane properties of cationic liposomes composed of dipalmitoylphosphatidylcholine and dipalmityldimethylammonium bromide,” Colloids and Surfaces B: Biointerfaces 44, 204-210, 2005.
    Yu, W. Y., Yang, Y. M. and Chang, C. H., “Cosolvent effects on the spontaneous formation of vesicles from 1:1 anionic and cationic surfactant mixtures,” Langmuir 21 6185-6193, 2005.
    Zhang, X. R., Huang, J. B., Mao, M., Tang, S. H. and Zhu, B. Y., “From precipitation to vesicles: a study on self-organized assemblies by alkylammonium and its mixtures in polar solvents,” Colloid Polym. Sci. 279, 1245-1249, 2001.
    Zhao, G. X. and Yu, W. L., “Vesicles from mixed sodium 10-undecenoatedecytrimethylammonium bromide solution,” J. Colloid Interface Sci. 173, 159-164, 1995.
    柯政遠,「乙醇體及陰陽體的製備及其包覆釋放行為之探討」,國立成功大學化學工程學系碩士論文,2008。
    李雅鈺,「含膽固醇之陰陽離子液胞穩定性及包覆行為之研究」, 國立成功大學化學工程學系碩士論文,2004.
    林冠豪,「帶電的陰陽離子液胞之製備及物理穩定性研究」,國立成功大學化學工程學系碩士論文,2004。
    林琪卿,「陰陽離子液胞的形成及其膠化之研究」,國立成功大學化學工程學系碩士論文,2005。
    吳國彰,「陰陽離子液胞穩定性及包覆/釋放行為的研究」,國立成功大學化學工程學系碩士論文,2005。
    吳芷容,「利用帶正電的陰陽離子液胞做為DNA載體之可行性的研究」,國立成功大學化學工程學系碩士論文,2008。
    陳炳宏和馮思慎,「微脂粒在藥物輸送的應用」,中國化學工程學會會刊,47(3),68-84,2000。
    徐立銘,「陰陽離子液胞包覆行為之探討」,國立成功大學化學工學系碩士論文,2002.
    黃鉦琳,「帶電陰陽離子液胞的形成及其膠化之研究」, 國立成功大學化學工程學系碩士論文,2007。
    游文月,「共溶劑促進陰陽離子液胞自發性形成之研究」,國立成功大學化學工程學系碩士論文,2004。
    劉晏如,「微脂粒配方與血液中蛋白質交互作用及其穩定性之研究」,國立清華大學化學工程學系碩士論文,2002。 
    鍾依玲,「陰/陽離子液胞自發性形成之探討」,國立成功大學化學工程學系碩士論文,2002。
    相關網頁 : (台灣微脂體公司)
    http://invest.taipei.gov.tw/data/96_1_2.pdf

    下載圖示 校內:2010-07-15公開
    校外:2010-07-15公開
    QR CODE