| 研究生: |
陳誠專 Chen, Cheng-Chuan |
|---|---|
| 論文名稱: |
利用微流體晶片進行類固醇藥物篩選 Microfluidic Chip System for Estrogen Related Drug Screening |
| 指導教授: |
陳淑慧
Chen, Shu-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 153 |
| 中文關鍵詞: | 微流體晶片 、類固醇 、藥物篩選 、線上濃縮 |
| 外文關鍵詞: | On-line concentration, Drug Screening, Estrogen, Microfluidic Chip |
| 相關次數: | 點閱:93 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
類固醇為調控生理活性之重要物質,其中包含人體的生長、發育、行為舉止及組織細胞修復的調控。類固醇相關之生理現象乃藉由與雌激素接受器特異性鍵結作用而促進,在探討雌激素接受器及與類固醇藥物之相互結合作用時,建立快速分析之平台乃是相當重要的課題,雖然現今已有許多分析類固醇藥物作用的方法被建立,但只有少數分析技術為可被廣泛應用之快速生物分析。
由於微流體晶片電泳分析技術具有快速、微型化、易操作、高整合性及樣品用量少等優點,使得此技術在近幾年已成為相當強大的分析工具之一。本研究中著重在利用微流體晶片探討類固醇藥物與接受器蛋白之親和性鍵結作用,並開發快速自動進樣微量分析之方法。在以晶片式電泳探討此鍵結作用時,其分離選擇性及偵測靈敏度為相當重要的一部分,故本研究中使用微胞動電力管柱層析分離(MEKC)結合線上濃縮技術(on-line concentration)以有效提高分離效率及偵測靈敏度。此線上濃縮技術乃採用高導電之樣品溶液搭配低導電度之微胞分離緩衝液,藉由電場差異性而達到樣品濃縮之目的;其中分離緩衝液中含有界面活性劑(膽酸鈉鹽)、環糊精和有機溶劑,這些添加物可提高類固醇藥物及雌激素蛋白接受器分析物之分離選擇性。本研究利用FITC 17β-Estradiol為螢光探針應用於類固醇藥物親和力分析,以電泳晶片建立類固醇藥物之快速篩選平台。
Estrogens are important biologically active substances associate with the growth, development, behavior and regulation of reproductive tissues in all vertebrates. Many of the effects of estrogens are mediated through binding to Estrogen Receptor. Thus it is important to develop a high-throughput analysis device for Estrogen Receptor binding of ligands and interaction determination. Various methods have been developed to assay these interactions, but only some of these are sufficiently convenient for high-throughput analysis.
In recent years, microchip electrophoresis has been one of the most powerful analytical tools because of its short analysis time, miniaturization, feasibility, integration, and small sample volumes. We demonstrate a rapid analysis method on auto sampling microfluidic chips to study estrogen binding assay. In addition, selectivity and detection sensitivity represent two of the most important features governing the analysis of estrogenic molecules. The on-line sample concentration method in microfluidic chip was established on micellar electrokinetic chromatography (MEKC) mode. It based on manipulation of high conductivity sample matrix combined with anionic surfactant (Sodium Cholate detergent), β cyclyodextrin, and organic modifiers in separation buffer. MEKC Stacking resulted in focusing and separation of the moderately hydrophobic classes of steroid, and estrogen receptor protein. With this powerful separation method, the bioanalytical assay for screening estrogenic drug standards by using the fluorescent probe (FITC labeled 17β-Estradiol) was established.
1. D. L. Nelson, M. M. Cox, Lehninger Principles
of Biochemistry, W. H. Freeman, 4th Edition,
465 (2004)
2. S. Jones, J. M. Thornton, Proc. Natl. Acad.
Sci. USA., 93, 13 (1996)
3. G. G. J. M. Kuiper, E. Enmark, M. Pelto-
Huikko, S. Nilsson, and J. A. Gustafsson,
Proc. Natl. Acad. Sci. U. S. A, 93, 5925
(1996)
4. E. Enmark, M. Pelto-Huikko, K. Grandien, S.
Lagercrantz, G. Fried, M. Nordenskjold, and J-
Å Gustafsson, J. Clin. Endocrinol. Met., 82,
4258 (1997)
5. S. Ogawa, S. Inoue, T. Watanabe, H. Hiroi, A.
Orimo, T. Hosoi, Y.Ouchi, and M. Muramatsu,
Biochem. Biophys. Res. Com., 243, 122 (1998)
6. A. H. Taylor and F. Al-Azzawi, J. Mol.
Endocrinol., 24, 145 (2000)
7. T. C. Bøg-Hansen, Anal. Biochem., 56, 480
(1973)
8. N. H. Heegaard, P. Lundahl, E. Greijer,
Quantitative Analysis of
Biospecific Interactions, Harwood Academic
Publishers, Amsterdam, 1 (1998)
9. S. Nakamura, T. Wakeyama, J. Biochem. Tokyo,
49, 733 (1961)
10. M. Szylit, Ann. Biol. Clin. 29, 215 (1971)
11. K. Takeo, S. Nakamura, Arch. Biochem.
Biophys., 153, 1 (1972)
12. S. J. Gerbrandy, A. Doorgeest,
Phytochemistry, 11, 2403 (1972)
13. R. A. Alberty, E. L. King, J. Am. Chem., 73,
517 (1951)
14. M. Macheboeuf, P. Rebryrotte, J. M. Dubert,
M. Brunerie, Bull. Soc. Chem. Biol., 35, 334
(1953)
15. S. Nakamura, T. Ueta, Nature, 182, 875 (1958)
16. A. Kohlarush, Ann. Phys. Chem., 62, 209
(1987)
17. S. Terabe, I. K. Otsuka, A. Tsuchiyu, T.
Ando, Anal. Chem., 56, 111 (1984)
18. CHEMISTRY (THE CHINESE CHEM. SOC., TAIPEI),
59, 363 (2001)
19. P. Camilleri, Capillary Electrophoresis, CRC
press, Boca Raton, FL. (1993)
20. H. Shintani, J. Polonsky, Handbook of
Capillary Electrophoresis Applications,
Blackie, Lodon (1997)
21. M. G. Khaledi, High Performance Capillary
Electrophoresis: theory, techniques and
applications, John Wiley & Sons, New York,
NY (1998)
22. C. E. Lin, C. C. Chen, H. W. Chen, H. C.
Huang, C. H. Lin, Y. C. Liu, J. Chromatogr.
A, 910, 165 (2001)
23. F. E. P. Mikkers, F. M. Everaerts, J.
Chromatogr., 169, 1 (1979)
24. S. E. Moring, J. C. Colburn, P. D. Grossman,
H. H. Lauer, LC-GC Intl., 3, 46 (1990)
25. R. L. Chien, D. S. Burgi, Anal. Chem., 64,
489A (1992)
26. R. L. Chien, D. S. Burgi, Anal. Chem., 63,
2042 (1991)
27. R. L. Chien, D. S. Burgi, J. Microcol., 3,
199 (1991)
28. R. L. Chien, D. S. Burgi, Anal. Biochem.,
202, 306 (1992)
29. J. P. Quirino, S. Terabe, J. Chromatogr. A,
781, 119 (1997)
30. J. P. Quirino, S. Terabe, J. Chromatogr. A,
791, 255 (1997)
31. J. P. Quirino, S. Terabe, Anal. Chem., 70,
149 (1998)
32. J. P. Quirino, S. Terabe, J. Chromatogr. A,
798, 251 (1998)
33. J. P. Quirino, S. Terabe, Anal. Chem., 70,
1893 (1998)
34. J. P. Quirino, S. Terabe, J. Chromatogr. B,
714, 29 (1998)
35. J. P. Quirino, S. Terabe, Science, 282, 465
(1998)
36. R. L. Chien, D. S. Burgi, Anal. Biochem.,
202, 306 (1992)
37. J. P. Quirino, S. Terabe, J. Chromatogr. A,
781, 119 (1997)
38. J. P. Quirino, S. Terabe, J. Chromatogr. A,
791, 255 (1997)
39. J. P. Quirino, S. Terabe, Anal. Chem., 70,
149 (1998)
40. J. Palmer, N. J. Munro, J. P. Landers, Anal.
Chem., 71, 1679 (1999)
41. Y. H. Lin, G. B. Lee, C. W. Li, G. R. Huang,
Y. H. Chen, K. C. Young, T. T. Chang, Micro-
Tas 2000, Netherlands, May (2001)
42. S. C. Jacobson, R. Hergenroder, L. B.
Koutny, R. J. Warmack, J. M. Ramsey, Anal.
Chem., 66, 1107 (1994)
43. S. C. Jacobson, R. Hergenroder, L. B.
Koutny, R. J. Warmack, J. M. Ramsey, Anal.
Chem., 66, 2369 (1994)
44. S. H. Chen,Y. H. Lin, L. Y. Wang, C. C. Lin,
G. B. Lee, Anal. Chem.,74, 5146 (2002)
45. C. C. Lin, G. B. Lee, S. H. Chen,
Electrophoresis, 23, 3550 (2002)
46. E. Garcia, J. R. Kirkham, A. V. Hatch, K. R.
Hawkins, P. Yager, Lab on a Chip, 4, 78
(2004)
47. E. Alvira, J. A. Mayoral, J. I. Garcia,
Chem. Phys. Lett., 245, 355 (1995)
48. F. W. Lichtenthaler, S. Immel,
Statch/Staerhe, 48, 145 (1996)
49. N. H. Heegard, R. T. Kennedy,
Electrophoresis, 20, 3122 (1999)
50. H. H. Yarabe, E. Billiot, I. M. Warner, J.
Chromatogr. A, 875, 179 (2000)
51. Z. E. Rassi, J. Chromatogr. A, 875, 207
(2000)
52. S. Fanali, J. Chromatogr. A, 792, 127 (1997)
53. B. Koppenhoefer, X. F. Zhu, A. Jakob, S.
Wuerthner, B. C. Lin, J. Chromatogr. A, 875,
135 (2000)
54. S. Fanali, J. Chromatogr. A, 875, 89 (2000)
55. S. Fanali, Z. Aturki, C. Desiderio,
Enantiomer, 4, 229 (1999)
56. R. Kuhn, Electrohporesis, 20, 2605 (1999)
57. R. Vespalec, P. Boèek, Electrophoresis, 20,
2579 (1999)
58. V. kasièka, Electrophoresis, 20, 3084 (1999)
59. Y. H. Chu, X. Zang, J. Tu, J. Chin. Chem.
Soc., 45, 713 (1998)
60. M. Rosanne, D. Guijt-van, F. Johannes,
Electrophoresis, 21, 3905 (2000)
61. J. Matthews, T. Celius, R. Halgren, T.
Zacharewski, Journal of Steroid
Biochemistry & Molecular Biology, 74, 223
(2000)
62. S. H. Kim, A. Tamrazi, K. E. Carlson, J. R.
Daniels, I. Y. Lee, J. A. Katzenellenbogen,
J. Am. Chem. Soc., 126, 4754 (2004)
63. The Endocrine Society, 138, 863 (1997)