| 研究生: |
蔡宜君 Tsai, Yi-Chun |
|---|---|
| 論文名稱: |
具精準力學控制之紫外光奈米壓印系統開發與應用 A Ultraviolet (UV) Nano-Imprinting System with Precision Contact Force and Deformation Control |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 可撓式模具 、UV奈米壓印 |
| 外文關鍵詞: | UV nanoimprinting lithography, soft polydimethylsiloxane |
| 相關次數: | 點閱:123 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究欲發展一種新式奈米壓印系統與壓印方法,利用紫外光固化之奈米壓印製程技術搭配具厚度變化之可撓式模具,可應用於圖案化藍寶石基板 (Pattern Sapphire Substrate, PSS) 的量產製程。其基本架構為:使用具厚度變化之撓性壓印膜仁(Flexible mold)、紫外光固化之阻劑膠(UV-curable resist resin)、四吋基板、與圓形軸對稱擴散式壓力流動(radial squeezing flow)的壓印方法;實驗中根據可撓式模具的柔軟特性,能完整貼覆於翹曲的基板上,改善傳統硬質壓印模具之高成本及低良率的問題,提升奈米壓印技術在產業應用上的可行性與廣泛性;另外,紫外光固化之壓印製程有著製程快速及常溫操作的優點,因此可應用於量產的製程。另外,在理論及模擬計算方面,根據有限元素法(Finite element method)分析不同厚度形貌之可撓性模具的變形,及不同時間點下之壓印過程中可撓式模具與基板間的壓力分佈及變形;藉由壓力感測系統(Pressure sensing system)量測實驗中真實壓力分佈,比對模擬及真實數據,修正模擬的真實性,由模擬算得壓印過程中各階段的壓力分佈,或進階模擬阻膠劑的流動情形與最佳施力值,找出更適當的壓力作動。
本文成功在四吋玻璃上製作出無殘留層的柱狀光阻結構,其柱狀結構製程是以傳統的矽基硬質模仁作為母模,翻製出高透光性的PDMS模具,將此模具無結構的背面黏合不同厚度之曲面PDMS,完成一具厚度變化且具結構之PDMS模具,並以此模具執行壓印製程;於基板中心滴上60 μL阻膠劑,基板與受壓變形之PDMS將阻劑膠由中心向外流動,再由紫外光固化膠後,可壓出無殘留層、線寬2 μm、週期3 μm、高度2 μm之柱狀光阻結構,改善傳統奈米壓印的殘留層問題,且以滴定阻膠劑取代旋轉塗佈,省去一製程步驟外,大量減少在旋轉塗佈機將阻劑膠旋塗至基板外的不當浪費。
This thesis proposes a new type of ultraviolet (UV) nanoimprinting lithography based on soft polydimethylsiloxane (PDMS) molds with varying mold thickness. Due to the deformable and flexible characteristics of the soft mold, it is possible to achieve a conformable contact with substrates as well as a controllable contact pressure distribution during imprinting. Finite element method is adopted to analyze the mold deformation and mold/substrate contact pressure for different geometrical designs of the mold and mechanical loading steps. Experimentally the contact pressure is measured by an area pressure sensing system and compared with simulation results.
To apply this imprinting method for manufacturing of patterned sapphire substrates (PSSs), PDMS molds with varying thickness are prepared through molding processes on a silicon mold containing hexagonally arrayed micro-pillars. A drop of UV-curing resin (60 μL) is placed in between the initially deformed PDMS mold and a sapphire substrate. Hexagonally arrayed pillar-shaped PR microstructures are formed by mechanical loading forces and UV radiation. The diameter and center-to-center pitch of these pillar arrays are 2 μm and 3 μm, respectively. The imprinted height is 2 μm without any residual layer thickness.
[1] M. Davanco, A. Xing, E. L. Hu, and D. J. Blumenthal, "Perspectives on the application of InP-based photonic crystal waveguides for optical signal processing," in Optics East 2005, 2005, pp. 601411-601411-15.
[2] J. Lee, D.-H. Kim, J. Kim, and H. Jeon, "GaN-based light-emitting diodes directly grown on sapphire substrate with holographically generated two-dimensional photonic crystal patterns," Current Applied Physics, vol. 9, pp. 633-635, 2009.
[3] I. Tiginyanu, V. Ursaki, and V. Popa, "Nanoimprint lithography (NIL) and related techniques for electronics applications," pp. 280-329, 2011.
[4] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint of sub‐25 nm vias and trenches in polymers," Applied physics letters, vol. 67, pp. 3114-3116, 1995.
[5] "Manufacturing LEDs on large diameter substrates: What's the holdup?," LEDs magazine, 2013.
[6] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao, "Pattern-size dependence of characteristics of nitride-based LEDs grown on patterned sapphire substrates," Journal of Crystal Growth, vol. 311, pp. 2973-2976, 2009.
[7] S. Y. Chou, "Nanoimprint lithography," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 14, p. 4129, 1996.
[8] M. Colburn, S. C. Johnson, M. D. Stewart, S. Damle, T. C. Bailey, B. Choi, et al., "Step and flash imprint lithography: a new approach to high-resolution patterning," In Microlithography'99, 1999, pp. 379-389.
[9] Y. Xia, J. Tien, D. Qin, and G. M. Whitesides, "Non-photolithographic methods for fabrication of elastomeric stamps for use in microcontact printing," Langmuir, vol. 12, pp. 4033-4038, 1996.
[10] Y.-C. Lee and C.-Y. Chiu, "Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching," Journal of Micromechanics and Microengineering, vol. 18, p. 075013, 2008.
[11] 謝易達 , 李永春, "奈米壓印與金屬轉印技術應用於提升發光二極體發光效率," 國立成功大學機械工程學系碩士論文, 2010.
[12] M. R. Krames, M. Ochiai-Holcomb, G. E. Höfler, C. Carter-Coman, E. I. Chen, I. H. Tan, et al., "High-power truncated-inverted-pyramid (AlxGa 1−x)0.5In0.5P/GaP light-emitting diodes exhibiting >50% external quantum efficiency," Applied Physics Letters, vol. 75, p. 2365, 1999.
[13] Y. J. Lee, T. C. Lu, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, et al., "Nano-roughening n-side surface of AlGaInP-based LEDs for increasing extraction efficiency," Materials Science and Engineering: B, vol. 138, pp. 157-160, 2007.
[14] R. H. Horng, C. C. Yang, J. Y. Wu, S. H. Huang, C. E. Lee, and D. S. Wuu, "GaN-based light-emitting diodes with indium tin oxide texturing window layers using natural lithography," Applied Physics Letters, vol. 86, p. 221101, 2005.
[15] H. K. Cho, J. Jang, J.-H. Choi, J. Choi, J. Kim, J. S. Lee, et al., "Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes," Optics Express, vol. 14, pp. 8654-8660, 2006.
[16] Y.-J. Lee, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, "High brightness GaN-based light-emitting diodes," Journal of Display Technology, vol. 3, pp. 118-125, 2007.
[17] Y.-C. Lee, S.-C. Yeh, Y.-Y. Chou, P.-J. Tsai, J.-W. Pan, H.-M. Chou, et al., "High-efficiency InGaN-based LEDs grown on patterned sapphire substrates using nanoimprinting technology," Microelectronic Engineering, vol. 105, pp. 86-90, 2013.
[18] H. Gao, F. Yan, Y. Zhang, J. Li, Y. Zeng, and G. Wang, "Improvement of the performance of GaN-based LEDs grown on sapphire substrates patterned by wet and ICP etching," Solid-State Electronics, vol. 52, pp. 962-967, 2008.
[19] J.-H. Lee, D.-Y. Lee, B.-W. Oh, and J.-H. Lee, "Comparison of InGaN-based LEDs grown on conventional sapphire and cone-shape-patterned sapphire substrate," Electron Devices, IEEE Transactions on, vol. 57, pp. 157-163, 2010.
[20] J.-H. Lee, J. Oh, Y. Kim, and J.-H. Lee, "Stress reduction and enhanced extraction efficiency of GaN-based LED grown on cone-shape-patterned sapphire," Photonics Technology Letters, IEEE, vol. 20, pp. 1563-1565, 2008.
[21] C.-C. Kao, Y.-K. Su, C.-L. Lin, and J.-J. Chen, "The aspect ratio effects on the performances of GaN-based light-emitting diodes with nanopatterned sapphire substrates," Applied Physics Letters, vol. 97, p. 023111, 2010.
[22] M. Beck, M. Graczyk, I. Maximov, E.-L. Sarwe, T. Ling, M. Keil, et al., "Improving stamps for 10 nm level wafer scale nanoimprint lithography," Microelectronic Engineering, vol. 61, pp. 441-448, 2002.
[23] N. Koo, M. Otto, J. W. Kim, J.-H. Jeong, and H. Kurz, "Press and release imprint: Control of the flexible mold deformation and the local variation of residual layer thickness in soft UV-NIL," Microelectronic Engineering, vol. 88, pp. 1033-1036, 2011.
[24] E. Vazsonyi, K. De Clercq, R. Einhaus, E. Van Kerschaver, K. Said, J. Poortmans, et al., "Improved anisotropic etching process for industrial texturing of silicon solar cells," Solar energy materials and solar cells, vol. 57, pp. 179-188, 1999.
[25] T. Kim, J. Kim, M.-S. Yang, S. Lee, Y. Park, U. I. Chung, et al., "Highly efficient yellow photoluminescence from {11–22} InGaN multiquantum-well grown on nanoscale pyramid structure," Applied Physics Letters, vol. 97, p. 241111, 2010.
[26] W. H. Southwell, "Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces," J. Opt. Soc. Am. A, vol. 8, pp. 549-553, 1991.
[27] M. J. Madou, Fundamentals of microfabrication: the science of miniaturization: CRC press, 2002.
[28] C. Pina‐Hernandez, J. S. Kim, L. J. Guo, and P. F. Fu, "High‐Throughput and Etch‐Selective Nanoimprinting and Stamping Based on Fast‐Thermal‐Curing Poly (dimethylsiloxane) s," Advanced materials, vol. 19, pp. 1222-1227, 2007.