| 研究生: |
蔡依寧 Tsai, Yi-Ling |
|---|---|
| 論文名稱: |
植體固位式覆蓋義齒之生物力學評估:有限元素分析 Biomechanical Evaluation of Implant-Retained Overdenture: Finite Element Analysis |
| 指導教授: |
張志涵
Chang, Chih-Han |
| 共同指導教授: |
劉保興
Liu, Pao-Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 植體固位式覆蓋義齒 、有限元素分析 、植體數量 、植體分布 、皮質骨厚度 |
| 外文關鍵詞: | Implant-retained overdenture, Finite element analysis, Implant number, Implant distribution, Cortical thickness |
| 相關次數: | 點閱:128 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
全口無牙為台灣老年患者常見的口腔疾病之一,其治療方式主要分為兩種形式:傳統假牙以及覆蓋義齒,然而植體式覆蓋義齒是現今最常用的技術,例如植體固位式覆蓋義齒,但是對於其植體數量,植體分布以及皮質骨厚度在生物力學上的影響尚未釐清。此外,兩根植體固位式覆蓋義齒廣泛使用於無牙患者並且主要植入於前牙區域。然而為何選用數量較少的植體且植入於前牙區的原因需要作進一步的探討。本研究的目的為使用有限元素分析探討具有完整解剖結構的植體固位式覆蓋義齒在不同的植體數量、植體分布以及皮質骨厚度參數下生物力學之影響。
三維有限元素模型包括上顎、食團、覆蓋義齒、黏膜、附連體、植體以及下顎骨(皮質骨及海綿骨),並搭配三種植體分布、三種植體數量(2根、3根及4根)和三種皮質骨厚度組合成19組模型,以探討各參數對於植體固位式覆蓋義齒之生物力學影響,並進一步探討植體固位式覆蓋義齒之應力、應變及穩定度與植體及覆蓋義齒斷裂之關聯性。
研究結果顯示在植入兩根植體固位式覆蓋義齒於前牙區時,在各元件上有較低的應力值並提供較佳的穩定度,而在多根植體固位式覆蓋義齒時植體植入越往後牙區,降低應力的效果更為顯著;在覆蓋義齒、附連體以及植體上之最大等效應力植均未達到材料之降伏應力,反之,在植體周圍骨頭上之最大應變皆超過文獻所示之標準值(4000 microstrain)可能導致骨頭吸收。然而,在本研究中皮質骨厚度所造成的影響較無植體分布來得顯著。
本研究中對於植體數量之生物力學行為可明顯看出兩根植體固位式覆蓋義齒較多根植體固位式覆蓋義齒佳,這也表示臨床上使用兩根植體固位式覆蓋義齒確實可以獲得較好的成功率。
Overdenture combing with dental implant is the most common technique nowadays, such as implant-retained overdenture, but the influences of biomechanics in parameters of implant number, implant distribution, and cortical thickness are unclear. Moreover, two-implant-retained overdenture, which was mainly inserted at anterior region of dentition was widely used in edentulous patient. The reasons why less implants were chosen and where the implants were inserted at the anterior area should be further investigated. The purpose of this study is to investigate biomechanical effects of parameters in implant number, implant distribution and cortical thickness using complete anatomical structure of the implant-retained overdenture model by three-dimensional finite element (FE) analysis.
FE model, which was consisted of maxilla, food, overdenture, mucosa, attachments, implants and mandible, was constructed combining with three types of implant distributions, implant numbers (insertion of two, three, and four implants), and cortical bone thicknesses, total 19 models for investigating. The FE models of this study were used to investigate biomechanical effect of implant-retained overdenture comparing with three major parameters (such as implant number, implant distribution and cortical thickness). The relationship between mechanical index of FE models, such as stress, strain and stability, and fracture of implant-retained overdenture were further investigated.
The results showed that the type of two-implant insertion at the anterior dentation could provide a lower stress magnitude and better stability for all components of implant-retained overdenture model, moreover, the type of multiple implants retained overdenture was also demonstrated the tendency of more and more stress reduction of the overdenture components while the implant placements more shifted to posterior region of the dentition. Periimplant bones of the FE models were significantly evidenced the bone resorption effects due to 4000 micro strain exceeding, but on the contrary the stress magnitudes of the overdenture, attachments, and implants were too less to induce the failure. In addition, the effects of cortical thickness to implants retained overdenture were less important than implant distribution in this study.
Obviously the biomechanical benefit in the type of two implants retained overdenture was better than the type of multiple implants retained overdenture. This evidence is consistent with clinical outcomes which indicate the two implants retained overdenture reconstruction can provide a better success rate.
1. The Glossary of Prosthodontic Terms. The Journal of prosthetic dentistry, 2005. 94(1): p. 10-92.
2. Bureau of Health Promotion,Department of Health, R.O.C.
3. Directorate-General of Budget,Accounting and Statistics, Executive Yuan, R.O.C.
4. Ministry of the Interior, Department of Stastistics, R.O.C. From: http://statis.moi.gov.tw/micst/stmain.jsp?sys=220&ym=10104&ymt=10204&kind=21&type=1&funid=c0110201&cycle=41&outmode=0&compmode=0&outkind=1&fldlst=1111&cod00=1&rdm=Uednlene.
5. Frost, H.M., Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians. The Angle Orthodontist, 1994. 64(3): p. 175-188.
6. Kravitz, N.D. and B. Kusnoto, Risks and complications of orthodontic miniscrews. American Journal of Orthodontics and Dentofacial Orthopedics, 2007. 131(4, Supplement): p. S43-S51.
7. Zarb, G.A., Contemporary implant dentistry. International Journal of Oral and Maxillofacial Surgery, 2008. 37: p. 12.
8. Cawood, J.I. and R.A. Howell, A classification of the edentulous jaws. International Journal of Oral and Maxillofacial Surgery, 1988. 17(4): p. 232-236.
9. Turkyilmaz, I., et al., Relations between the bone density values from computerized tomography, and implant stability parameters: a clinical study of 230 regular platform implants. Journal of Clinical Periodontology, 2007. 34(8): p. 716-722.
10. Bergman, B. and G.E. Carlsson, Clinical long-term study of complete denture wearers. The Journal of Prosthetic Dentistry, 1985. 53(1): p. 56-61.
11. Atwood, D.A., Reduction of residual ridges: A major oral disease entity. The Journal of Prosthetic Dentistry, 1971. 26(3): p. 266-279.
12. Tallgren, A., The continuing reduction of the residual alveolar ridges in complete denture wearers: a mixed-longitudinal study covering 25 years. J Prosthet Dent, 1972. 27(2): p. 120-32.
13. Carlsson, G.E., Clinical morbidity and sequelae of treatment with complete dentures. The Journal of Prosthetic Dentistry, 1998. 79(1): p. 17-23.
14. Liu, J., et al., Influence of implant number on the biomechanical behaviour of mandibular implant-retained/supported overdentures: A three-dimensional finite element analysis. Journal of Dentistry, 2013. 41(3): p. 241-249.
15. Bergendal, T., Implant-supported overdentures: a longitudinal prospective study. International Journal of Oral and Maxillofacial Implants, 1998. 13(2): p. 253.
16. Mericske-Stern, R. and G.A. Zarb, Overdentures: an alternative implant methodology for edentulous patients. The International journal of prosthodontics, 1993. 6(2): p. 203-208.
17. The long-term efficacy of currently used dental implants: a review and proposed criteria of success. Int J Oral Maxillofac Implants 1986. 1: p. 11-25.
18. Lee, J.-H., et al., Effect of implant size and shape on implant success rates: A literature review. The Journal of Prosthetic Dentistry, 2005. 94(4): p. 377-381.
19. Stalblad, P.A., et al., Osseointegration in overdenture therapy. Preliminary comments. Swed Dent J Suppl, 1985. 28: p. 169-70.
20. Batenburg, R.H.K., Treatment concept for mandibular overdentures supported by endosseous implants: a literature review. International Journal of Oral and Maxillofacial Implants, 1998. 13(4): p. 539.
21. Van Steenberghe D, Q.M., Calberson L, Demanet M, A prospective evaluation of the fate of 697 consecutive intra-oral fixtures modum Brånemark in the rehabilitation of edentulism. . J Head Neck Pathol 1987(6): p. 53-58.
22. Feine, J.S., et al., The McGill consensus statement on overdentures. Mandibular two-implant overdentures as first choice standard of care for edentulous patients. Montreal, Quebec, May 24-25, 2002. International Journal of Oral & Maxillofacial Implants, 2002. 17(4): p. 601-2.
23. Misch, C.E., Dental implant prosthetics. 2005, St. Louis, Mo. :: Mosby. xix, 626 p. :.
24. Sadowsky, S.J., Mandibular implant-retained overdentures: A literature review. The Journal of Prosthetic Dentistry, 2001. 86(5): p. 468-473.
25. Kordatzis, K., P.S. Wright, and H.J. Meijer, Posterior mandibular residual ridge resorption in patients with conventional dentures and implant overdentures. The International journal of oral & maxillofacial implants, 2003. 18(3): p. 447-452.
26. Simon, H., Terminology for implant prostheses. International Journal of Oral and Maxillofacial Implants, 2003. 18(4): p. 539.
27. Karabuda, C., et al., Comparison of 2 retentive systems for implant-supported overdentures: soft tissue management and evaluation of patient satisfaction. J Periodontol, 2002. 73(9): p. 1067-70.
28. Meijer, H.J.A., et al., Mandibular overdentures supported by two Brånemark, IMZ or ITI implants: a 5-year prospective study. Journal of Clinical Periodontology, 2004. 31(7): p. 522-526.
29. Goodacre, C.J., et al., Clinical complications with implants and implant prostheses. The Journal of Prosthetic Dentistry, 2003. 90(2): p. 121-132.
30. Sertgöz, A. and S. Güvener, Finite element analysis of the effect of cantilever and implant length on stress distribution in an implant-supported fixed prosthesis. The Journal of Prosthetic Dentistry, 1996. 76(2): p. 165-169.
31. Martin, R.B., -, Structure, function, and adaptation of compact bone, ed. D.B. Burr. 1989, New York :: Raven Press. xii, 275 p. :.
32. Ogawa, T., et al., Impact of implant number, distribution and prosthesis material on loading on implants supporting fixed prostheses. J Oral Rehabil, 2010. 37(7): p. 525-31.
33. http://www.surgicalnotes.co.uk/?q=node/223, http://www.instantanatomy.net/headneck/areas/othermuscleattachmentsoutsidemandible.html.
34. Daas, M., et al., A complete finite element model of a mandibular implant-retained overdenture with two implants: Comparison between rigid and resilient attachment configurations. Medical Engineering & Physics, 2008. 30(2): p. 218-225.
35. Bonnet, A.S., M. Postaire, and P. Lipinski, Biomechanical study of mandible bone supporting a four-implant retained bridge: Finite element analysis of the influence of bone anisotropy and foodstuff position. Medical Engineering & Physics, 2009. 31(7): p. 806-815.
36. Dejak, B., A. Młotkowski, and C. Langot, Three-dimensional finite element analysis of molars with thin-walled prosthetic crowns made of various materials. Dental Materials, 2012. 28(4): p. 433-441.
37. van Eijden, T.M.G.J., J.A.M. Korfage, and P. Brugman, Architecture of the human jaw-closing and jaw-opening muscles. The Anatomical Record, 1997. 248(3): p. 464-474.
38. de Zee, M., et al., Validation of a musculo-skeletal model of the mandible and its application to mandibular distraction osteogenesis. Journal of Biomechanics, 2007. 40(6): p. 1192-1201.
39. Koolstra, J.H. and T.M.G.J. van Eijden, Combined finite-element and rigid-body analysis of human jaw joint dynamics. Journal of Biomechanics, 2005. 38(12): p. 2431-2439.
40. Barão, V.A.R., et al., Comparison of different designs of implant-retained overdentures and fixed full-arch implant-supported prosthesis on stress distribution in edentulous mandible – A computed tomography-based three-dimensional finite element analysis. Journal of Biomechanics, 2013. 46(7): p. 1312-1320