簡易檢索 / 詳目顯示

研究生: 呂佳蓉
Lu, Jiay-Rong
論文名稱: 使用 Landsat 8 衛星影像多指標法分析近年臺灣濁水溪沖積扇的乾旱時空變化
Multi-index Analysis of Recent Spatiotemporal Variations in Drought Using Landsat 8 Satellite Imagery in Choushui River Alluvial Fan, Taiwan
指導教授: 葉信富
Yeh, Hsin-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 103
中文關鍵詞: Landsat 8衛星影像改進型溫度植生乾燥指數乾旱時空變化濁水溪沖積扇
外文關鍵詞: Landsat 8 satellite imagery, improved Temperature Vegetation Dryness Index (iTVDI), spatiotemporal variations of drought, Choushui River Alluvial Fan
相關次數: 點閱:120下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年氣候異常導致乾旱事件增加,臺灣經常面臨水資源短缺問題,對社會經濟和生態系統造成嚴重影響,因此瞭解乾旱是非常重要的。本研究採用2013年至2022年的Landsat 8衛星影像、降雨以及溫度資料,計算溫度植生乾燥指數 (Temperature Vegetation Dryness Index, TVDI)、改進型溫度植生乾燥指數 (improved Temperature Vegetation Dryness Index, iTVDI)、常態化差異乾旱指數(Normalized Difference Drought Index, NDDI)以及標準化降水指數(Standardized Precipitation Index, SPI)等四種乾旱指數,探討近十年濁水溪沖積扇的乾旱時空變化。為檢驗上述乾旱指數的合理性,本研究將乾旱指數與土壤含水量和土地利用/土地覆蓋比較分析。研究結果顯示,TVDI和iTVDI在平原區呈現相似的變化,但在山區的差異較大,以土壤含水量數據作為依據,iTVDI的準確性優於TVDI。時間上,iTVDI在乾季(11月至隔年4月)為0.62 ± 0.03,屬於乾旱範圍;濕季(5月至10月)為0.54 ± 0.06,屬於正常範圍。此外,在2015、2018和2021年均出現乾旱事件。空間上,濁水溪沖積扇沿海和山區iTVDI值比扇央區域低,顯示扇央區域較容易發生乾旱,且濕潤和乾燥區域的空間位置不會隨時間改變。另外,土地利用/土地覆蓋分析結果與iTVDI比較,顯示濕潤區域主要位於研究區域東部林地區域與西部水體區域,作物和建地為主的草地和裸地較乾燥。最後,TVDI、iTVDI、SPI和NDDI相關性分析結果顯示,顯示乾旱程度隨著降雨減少或植被減少而增加。本研究透過衛星影像資料分析乾旱的時空變化,可為乾旱監測和水資源管理提供參考,減輕乾旱對社會、經濟和環境的影響。

    In recent years, the increase in drought events due to abnormal climate change has caused Taiwan to frequently face water scarcity problems, which have had severe impacts on the social economy and ecological systems. Therefore, understanding drought is very importance. This study utilized Landsat 8 satellite imagery, rainfall, and temperature data from 2013 to 2022 to calculate four drought indices, including the Temperature Vegetation Dryness Index (TVDI), improved Temperature Vegetation Dryness Index (iTVDI), Normalized Difference Drought Index (NDDI), and Standardized Precipitation Index (SPI), to investigate the spatiotemporal variations of drought in the Choushui River Alluvial Fan over the past decade. To verify the rational of the drought indices that mention above, this study compared the drought indices with soil moisture and land use/land cover data. The results show that TVDI and iTVDI exhibited similar variations in the plain areas, but had greater differences in the mountainous areas. Based on the soil moisture data, the accuracy of iTVDI was superior to that of TVDI. In terms of time, the iTVDI value was 0.62 ± 0.03 during the dry season (November to April of the following year), which falls within the dry range, and 0.54 ± 0.06 during the wet season (May to October), which falls within the normal range. Additionally, drought events occurred in 2015, 2018, and 2021. In terms of region, the iTVDI values in the coastal and mountainous areas were lower than in the central fan area, indicating that the central fan area has a higher possibility for drought occurrence, and the regional positions of the wet and dry areas do not change over time. Furthermore, the comparison of the land use/land cover analysis results with the iTVDI showed that the wet areas were mainly located in the eastern forested regions and western water body areas of the study region, while the grasslands and bare lands dominated by crops and building areas were more dry. Finally, the correlation analysis results among TVDI, iTVDI, SPI, and NDDI showed that the drought severity increased as rainfall decreased or vegetation decreased. This study’s analysis of the spatiotemporal variations of drought using satellite imagery data can provide a reference for drought monitoring and water resource management, aiming to lessen the impacts of drought on society, the economy, and the environment.

    Abstract 1 摘要 3 Acknowledgement 4 Table of Contents 5 List of Tables 7 List of Figures 8 Chapter 1 Introduction 10 1.1 Motivation and Purpose 10 1.2 Research Process 17 Chapter 2 Methodology 19 2.1 Temperature Vegetation Dryness Index (TVDI) 20 2.1.1 Normalized Difference Vegetation Index (NDVI) 24 2.1.2 Land Surface Temperature (LST) 26 2.2 improved Temperature Vegetation Dryness Index (iTVDI) 30 2.3 Normalized Difference Drought Index (NDDI) 31 2.3.1 Normalized Difference Water Index (NDWI) 31 2.4 Standardized Precipitation Index (SPI) 33 Chapter 3 Materials 35 3.1 Study Area 35 3.2 Data 37 3.2.1 Landsat 8 Satellite Imagery 37 3.2.2 TCCIP Meteorological Data 39 3.2.3 Land Use / Land Cover (LULC) 39 3.2.4 Soil Moisture (SM) 42 Chapter 4 Results and Discussion 43 4.1 Analysis Results and Spatiotemporal Variation of NDVI 43 4.2 Analysis Results and Spatiotemporal Variation of LST 46 4.3 The analysis results of the NDVI-LST spatial and the dry/wet edges 49 4.4 Analysis results and spatiotemporal variation of TVDI 51 4.5 Analysis Results and Spatiotemporal Variation of iTVDI 58 4.6 Analysis Results and Spatiotemporal Variation of NDDI 63 4.7 The results of the SPI analysis 66 4.8 The relationship between TVDI, iTVDI, and soil moisture content 68 4.9 The relationship between LULC and drought variations 69 4.10 The relationship between iTVDI and drought indices 71 Chapter 5 Conclusions 73 References 76 Appendix 91

    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A., & Hegewisch, K. C. (2018). TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Scientific data, 5(1), 1-12.
    Abdi, O. (2019). Climate-triggered insect defoliators and forest fires using multitemporal Landsat and TerraClimate data in NE Iran: An application of GEOBIA TreeNet and panel data analysis. Sensors, 19(18), 3965.
    AghaKouchak, A., Farahmand, A., Melton, F. S., Teixeira, J., Anderson, M. C., Wardlow, B. D., & Hain, C. R. (2015). Remote sensing of drought: Progress, challenges and opportunities. Reviews of Geophysics, 53(2), 452-480.
    Ahmad, Q. U. A., Moors, E., Biemans, H., Shaheen, N., Masih, I., & ur Rahman Hashmi, M. Z. (2023). Climate-induced shifts in irrigation water demand and supply during sensitive crop growth phases in South Asia. Climatic Change, 176(11), 150.
    Aksoy, S., & Sertel, E. (2021). Comparison of drought monitoring indices derived from MODIS and CHIRPS data using Google Earth Engine. In 9th Global Conference on Global Warming (GCGW-2021), Croatia, 4p.
    Arshad, M., Amjath-Babu, T. S., Krupnik, T. J., Aravindakshan, S., Abbas, A., Kächele, H., & Müller, K. (2017). Climate variability and yield risk in South Asia’s rice–wheat systems: emerging evidence from Pakistan. Paddy and Water Environment, 15(2), 249-261.
    Bai, J. J., Yuan, Y. U., & Di, L. (2017). Comparison between TVDI and CWSI for drought monitoring in the Guanzhong Plain, China. Journal of integrative agriculture, 16(2), 389-397.
    Balew, A., & Korme, T. (2020). Monitoring land surface temperature in Bahir Dar city and its surrounding using Landsat images. The Egyptian Journal of Remote Sensing and Space Science, 23(3), 371-386.
    Bian, Z., Roujean, J. L., Fan, T., Dong, Y., Hu, T., Cao, B., ... & Liu, Q. (2023). An angular normalization method for temperature vegetation dryness index (TVDI) in monitoring agricultural drought. Remote Sensing of Environment, 284, 113330.
    Boonpook, W., Tan, Y., Nardkulpat, A., Torsri, K., Torteeka, P., Kamsing, P., ... & Jainaen, M. (2023). Deep learning semantic segmentation for land use and land cover types using Landsat 8 imagery. ISPRS International Journal of Geo-Information, 12(1), 14.
    Carlson, Toby. (2007). An overview of the “triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors, 7(8), 1612-1629.
    Chen, C. J., Chen, C. C., Lo, M. H., Juang, J. Y., & Chang, C. M. (2020). Central Taiwan’s hydroclimate in response to land use/cover change. Environmental Research Letters, 15(3), 034015.
    Chen, H. Y., Huang, C. C., & Yeh, H. F. (2021). Quantifying the relative contribution of the climate change and human activity on runoff in the choshui River Alluvial Fan, Taiwan. Land, 10(8), 825.
    Corrales-Andino, R. E., and Ochoa-López, V. L. (2016). Cálculo de reflectancia en imágenes Landsat OLI-8, sobre la región central de Honduras, mediante software libre SEXTANTE. Ciencias Espac. 9 (1), 81–96.
    Czigány, S., Sarkadi, N., Lóczy, D., Cséplő, A., Balogh, R., Fábián, S. Á., ... & Pirkhoffer, E. (2023). Impact of Agricultural Land Use Types on Soil Moisture Retention of Loamy Soils. Sustainability, 15(6), 4925.
    de la Iglesia Martinez, A., & Labib, S. M. (2023). Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environmental Research, 220, 115155.
    Ding, Y., Xu, J., Wang, X., Peng, X., & Cai, H. (2020). Spatial and temporal effects of drought on Chinese vegetation under different coverage levels. Science of the total environment, 716, 137166.
    Dobri, R. V., Sfîcă, L., Amihăesei, V. A., Apostol, L., & Țîmpu, S. (2021). Drought extent and severity on arable lands in Romania derived from normalized difference drought index (2001–2020). Remote Sensing, 13(8), 1478.
    Du, L., Song, N., Liu, K., Hou, J., Hu, Y., Zhu, Y., ... & Guo, Y. (2017). Comparison of two simulation methods of the temperature vegetation dryness index (TVDI) for drought monitoring in semi-arid regions of China. Remote Sensing, 9(2), 177.
    Du, L., Tian, Q., Yu, T., Meng, Q., Jancso, T., Udvardy, P., & Huang, Y. (2013). A comprehensive drought monitoring method integrating MODIS and TRMM data. International Journal of Applied Earth Observation and Geoinformation, 23, 245-253.
    Fariesta, A. R., Shidiq, I. P. A., & Dimyati, M. (2021). Spatial and temporal analysis of drought in rice fields using Normalized Difference Drought Index (NDDI) in Indramayu Regency. In Seventh Geoinformation Science Symposium 2021 (Vol. 12082, pp. 82-90). SPIE.
    Geiger, R., Aron, R. H., & Todhunter, P. (2009). The climate near the ground. Rowman & Littlefield.
    Ghazaryan, G., Dubovyk, O., Graw, V., Kussul, N., & Schellberg, J. (2020). Local-scale agricultural drought monitoring with satellite-based multi-sensor time-series. GIScience & Remote Sensing, 57(5), 704-718.
    Goward, S. N., & Hope, A. S. (1989). Evapotranspiration from combined reflected solar and emitted terrestrial radiation: Preliminary FIFE results from AVHRR data. Advances in Space Research, 9(7), 239-249.
    Goward, S. N., Masek, J. G., Loveland, T. R., Dwyer, J. L., Williams, D. L., Arvidson, T., ... & Irons, J. R. (2021). Semi-centennial of Landsat observations & pending Landsat 9 launch. Photogrammetric Engineering & Remote Sensing, 87(8), 533-539.
    Gu, Y., Brown, J. F., Verdin, J. P., & Wardlow, B. (2007). A five‐year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophysical research letters, 34(6).
    Guo, W., Huang, S., Huang, Q., She, D., Shi, H., Leng, G., ... & Peng, J. (2023). Precipitation and vegetation transpiration variations dominate the dynamics of agricultural drought characteristics in China. Science of the Total Environment, 898, 165480.
    Guttman, N. B. (1998). Comparing the palmer drought index and the standardized precipitation index 1. JAWRA Journal of the American Water Resources Association, 34(1), 113-121.
    Haque, S., Kannaujiya, S., Taloor, A. K., Keshri, D., Bhunia, R. K., Ray, P. K. C., & Chauhan, P. (2020). Identification of groundwater resource zone in the active tectonic region of Himalaya through earth observatory techniques. Groundwater for sustainable development, 10, 100337.
    Hazaymeh, K., & Hassan, Q. K. (2017). A remote sensing-based agricultural drought indicator and its implementation over a semi-arid region, Jordan. Journal of Arid Land, 9, 319-330.
    He, P., Xu, L., Liu, Z., Jing, Y., & Zhu, W. (2021). Dynamics of NDVI and its influencing factors in the Chinese Loess Plateau during 2002–2018. Regional Sustainability, 2(1), 36-46.
    Herawati, A., Mujiyo, M., Nugroho, B. D. E. P., Istiqomah, N. M., Irmawati, V., Hasanah, K., ... & Anggita, A. (2024). Drought potential index using Normalized Difference Drought Index (NDDI) method based on Geographical Information System (GIS) in Slogohimo, Wonogiri Indonesia. In IOP Conference Series: Earth and Environmental Science (Vol. 1314, No. 1, p. 012040). IOP Publishing.
    Holzman, M. E., Rivas, R., & Piccolo, M. C. (2014). Estimating soil moisture and the relationship with crop yield using surface temperature and vegetation index. International Journal of Applied Earth Observation and Geoinformation, 28, 181-192.
    Hope, A. S., Petzold, D. E., Goward, S. N., & Ragan, R. M. (1986). Simulated relationships between spectral reflectance, thermal emissions, and evapotranspiration of a soybean canopy 1. jawra Journal of the American Water Resources Association, 22(6), 1011-1019.
    Huang, S., Li, P., Huang, Q., Leng, G., Hou, B., & Ma, L. (2017). The propagation from meteorological to hydrological drought and its potential influence factors. Journal of Hydrology, 547, 184-195.
    Huang, W. R., Chang, Y. H., Cheng, C. T., Hsu, H. H., Tu, C. Y., & Kitoh, A. (2016). Summer Convective Afternoon Rainfall Simulation and Projection Using WRF Driven by Global Climate Model. Part I: Over Taiwan. Terrestrial, Atmospheric & Oceanic Sciences, 27(5).
    Idso, S. B., Jackson, R. D., Pinter Jr, P. J., Reginato, R. J., & Hatfield, J. L. (1981). Normalizing the stress-degree-day parameter for environmental variability. Agricultural meteorology, 24, 45-55.
    IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., doi:10.1017/CBO9781107415324.
    Javed, T., Li, Y., Rashid, S., Li, F., Hu, Q., Feng, H., ... & Pulatov, B. (2021). Performance and relationship of four different agricultural drought indices for drought monitoring in China's mainland using remote sensing data. Science of the total environment, 759, 143530.
    Kant, Y., & Badarinath, K. V. S. (1998). A method for estimating the land surface temperature from satellite data using emissivity derived from vegetation index. Current Science, 139-145.
    Keshavarz, M. R., Vazifedoust, M., & Alizadeh, A. (2014). Drought monitoring using a Soil Wetness Deficit Index (SWDI) derived from MODIS satellite data. Agricultural Water Management, 132, 37-45.
    Khan, S. U., Din, J. U., Qayyum, A., Jaan, N. E., & Jenks, M. A. (2015). Heat tolerance indicators in Pakistani wheat (Triticum aestivum L.) genotypes. Acta Botanica Croatica, 74(1), 109-121.
    Kumar, B. P., Babu, K. R., Anusha, B. N., & Rajasekhar, M. (2022). Geo-environmental monitoring and assessment of land degradation and desertification in the semi-arid regions using Landsat 8 OLI/TIRS, LST, and NDVI approach. Environmental Challenges, 8, 100578.
    Le, M. S., & Liou, Y. A. (2021). Spatio-temporal assessment of surface moisture and evapotranspiration variability using remote sensing techniques. Remote Sensing, 13(9), 1667.
    Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., ... & Park, Y. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland.
    Lee, Y. C., Wang, C. C., Weng, S. P., Chen, C. T., & Cheng, C. T. (2019). Future projections of meteorological drought characteristics in Taiwan. Atmos. Sci, 47, 66-91.
    Leng, G., & Hall, J. (2019). Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Science of the Total Environment, 654, 811-821.
    Li, C., Adu, B., Wu, J., Qin, G., Li, H., & Han, Y. (2022). Spatial and temporal variations of drought in Sichuan Province from 2001 to 2020 based on modified temperature vegetation dryness index (TVDI). Ecological Indicators, 139, 108883.
    Li, F., Jackson, T. J., Kustas, W. P., Schmugge, T. J., French, A. N., Cosh, M. H., & Bindlish, R. (2004). Deriving land surface temperature from Landsat 5 and 7 during SMEX02/SMACEX. Remote sensing of environment, 92(4), 521-534.
    Li, P. L., Lin, L. F., & Chen, C. J. (2021). Hydrometeorological assessment of satellite and model precipitation products over Taiwan. Journal of Hydrometeorology, 22(11), 2897-2915.
    Lin, L.-Y., Lin, C.-T., Chen, Y.-M., Cheng, C.-T., Li, H.-C.,Chen, W.-B. (2022). The Taiwan Climate Change Projection Information and Adaptation Knowledge Platform: A decade of climate research. Water 14(3): 358.
    Liou, Y. A., Le, M. S., & Chien, H. (2018). Normalized difference latent heat index for remote sensing of land surface energy fluxes. IEEE Transactions on Geoscience and Remote Sensing, 57(3), 1423-1433.
    Liu, Y., & Yue, H. (2018). The temperature vegetation dryness index (TVDI) based on Bi-parabolic NDVI-Ts space and gradient-based structural similarity (GSSIM) for long-term drought assessment across Shaanxi province, China (2000–2016).Remote Sensing, 10(6), 959.
    Liu, Y., Wu, L., & Yue, H. (2015). Biparabolic NDVI-Ts space and soil moisture remote sensing in an arid and semi arid area. Canadian Journal of Remote Sensing, 41(3), 159-169.
    Marengo, J. A., Cunha, A. P., Cuartas, L. A., Deusdará Leal, K. R., Broedel, E., Seluchi, M. E., ... & Bender, F. (2021). Extreme drought in the Brazilian Pantanal in 2019–2020: characterization, causes, and impacts. Frontiers in Water, 3, 639204.
    McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International journal of remote sensing, 17(7), 1425-1432.
    McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology (Vol. 17, No. 22, pp. 179-183).
    McMillin, L. M. (1975). Estimation of sea surface temperatures from two infrared window measurements with different absorption. Journal of geophysical research, 80(36), 5113-5117.
    Mehravar, S., Amani, M., Moghimi, A., Javan, F. D., Samadzadegan, F., Ghorbanian, A., ... & Mirmazloumi, S. M. (2021). Temperature-Vegetation-soil Moisture-Precipitation Drought Index (TVMPDI); 21-year drought monitoring in Iran using satellite imagery within google Earth engine. Advances in space research, 68(11), 4573-4593.
    Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology,391(1-2), 202-216.
    Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994). Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote sensing of environment, 49(3), 246-263.
    Nanzad, L., Zhang, J., Tuvdendorj, B., Nabil, M., Zhang, S., & Bai, Y. (2019). NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. Journal of arid environments, 164, 69-77.
    National Aeronautics and Space Administration (2013). Landsat data contrinuity mission (LDCM). [Online]. Washington, States United of America. Available: https://www.nasa.gov/pdf/723395main_LDCMpresskit2013-final.pdf (Accessed October 16, 2021).
    Neinavaz, E., Skidmore, A. K., & Darvishzadeh, R. (2020). Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method. International Journal of Applied Earth Observation and Geoinformation, 85, 101984.
    Nemani, R. R., & Running, S. W. (1989). Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. Journal of Applied Meteorology and Climatology, 28(4), 276-284.
    Palmer, W. C. (1965). Meteorological drought (Vol. 30). US Department of Commerce, Weather Bureau.
    Pan, Y., Zhu, Y., Lü, H., Yagci, A. L., Fu, X., Liu, E., ... & Liu, R. (2023). Accuracy of agricultural drought indices and analysis of agricultural drought characteristics in China between 2000 and 2019. Agricultural Water Management, 283, 108305.
    Paniagua, M. T., Villalba, J., & Pasten, M. (2020). Spatial-temporal distribution of drought in the western region of paraguay (2005-2017). In 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS) (pp. 636-639). IEEE.
    Peng, J., & Loew, A. (2017). Recent advances in soil moisture estimation from remote sensing. Water, 9(7), 530.
    Price, J. C. (1983). Estimating surface temperatures from satellite thermal infrared data—A simple formulation for the atmospheric effect. Remote sensing of environment, 13(4), 353-361.
    Rahimzadeh-Bajgiran, P., Omasa, K., & Shimizu, Y. (2012). Comparative evaluation of the Vegetation Dryness Index (VDI), the Temperature Vegetation Dryness Index (TVDI) and the improved TVDI (iTVDI) for water stress detection in semi-arid regions of Iran. ISPRS Journal of Photogrammetry and Remote Sensing, 68, 1-12.
    Rouse Jr, J. W., Haas, R. H., Deering, D. W., Schell, J. A., & Harlan, J. C. (1974). Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation (No. E75-10354).
    Saha, A., Pal, S. C., Chowdhuri, I., Roy, P., Chakrabortty, R., & Shit, M. (2023). Vulnerability assessment of drought in India: Insights from meteorological, hydrological, agricultural and socio-economic perspectives. Gondwana Research, 123, 68-88.
    Salas-Martínez, F., Valdés-Rodríguez, O. A., Palacios-Wassenaar, O. M., Márquez-Grajales, A., & Rodríguez-Hernández, L. D. (2023). Methodological estimation to quantify drought intensity based on the NDDI index with Landsat 8 multispectral images in the central zone of the Gulf of Mexico. Frontiers in Earth Science, 11, 1027483.
    Sánchez-Aparicio, M., Andrés-Anaya, P., Del Pozo, S., & Lagüela, S. (2020). Retrieving land surface temperature from satellite imagery with a novel combined strategy. Remote Sensing, 12(2), 277.
    Sandholt, I., Rasmussen, K., & Andersen, J. (2002). A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of environment, 79(2-3), 213-224.
    Shi, M., Yuan, Z., Shi, X., Li, M., Chen, F., & Li, Y. (2022). Drought assessment of terrestrial ecosystems in the Yangtze River Basin, China. Journal of Cleaner Production, 362, 132234.
    Shi, S., Yao, F., Zhang, J., & Yang, S. (2020). Evaluation of temperature vegetation dryness index on drought monitoring over Eurasia. IEEE Access, 8, 30050-30059.
    Smakhtin, V. U., & Hughes, D. A. (2004). Review, automated estimation and analyses of drought indices in South Asia.
    Sobrino, J. A., Jiménez-Muñoz, J. C., & Paolini, L. (2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sensing of environment, 90(4), 434-440.
    Soleimani Vosta Kolaei, F., & Akhoondzadeh, M. (2018). A comparison of four methods for extracting Land Surface Emissivity and Temperature in the Thermal Infrared Hyperspectral Data. Earth Observation and Geomatics Engineering, 2(1), 56-63.
    Sun, H. (2015). Two-stage trapezoid: A new interpretation of the land surface temperature and fractional vegetation coverage space. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1), 336-346.
    Susskind, J., Rosenfield, J., Reuter, D., & Chahine, M. T. (1984). Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS‐N. Journal of Geophysical Research: Atmospheres, 89(D3), 4677-4697.
    Tabatabaeenejad, A., Burgin, M., Duan, X., & Moghaddam, M. (2014). P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: First AirMOSS results. IEEE Transactions on Geoscience and Remote Sensing, 53(2), 645-658.
    Talukdar, S., Singha, P., Mahato, S., Pal, S., Liou, Y. A., & Rahman, A. (2020). Land-use land-cover classification by machine learning classifiers for satellite observations—A review. Remote Sensing, 12(7), 1135.
    Tan, K. C., Lim, H. S., MatJafri, M. Z., & Abdullah, K. (2010). Landsat data to evaluate urban expansion and determine land use/land cover changes in Penang Island, Malaysia. Environmental Earth Sciences, 60, 1509-1521.
    Tang, R., Li, Z. L., & Tang, B. (2010). An application of the Ts–VI triangle method with enhanced edges determination for evapotranspiration estimation from MODIS data in arid and semi-arid regions: Implementation and validation. Remote Sensing of Environment, 114(3), 540-551.
    Tao, L., Ryu, D., Western, A., & Boyd, D. (2020). A new drought index for soil moisture monitoring based on MPDI-NDVI trapezoid space using MODIS data. Remote Sensing, 13(1), 122.
    United States Geological Survey (2021). EarthExplorer. [Online]. Available: https://earthexplorer.usgs.gov/(Accessed August 15, 2021).
    USGS. Landsat 8 Data Users Handbook. Department of the Interior, U.S. Geological Survey. 2019. Available online: https://www.usgs.gov/landsat-missions/landsat-8-data-users-handbook.
    Vicente-Serrano, S. M., Quiring, S. M., Peña-Gallardo, M., Yuan, S., & Domínguez-Castro, F. (2020). A review of environmental droughts: Increased risk under global warming? Earth-Science Reviews, 201, 102953.
    Vuille, M. (2013). El cambio climático y los recursos hídricos en los Andes tropicales.
    Wan, W., Han, Y., Wu, H., Liu, F., & Liu, Z. (2021). Application of the source–sink landscape method in the evaluation of agricultural non-point source pollution: First estimation of an orchard-dominated area in China. Agricultural Water Management, 252, 106910.
    Wan, W., Liu, Z., Li, J., Xu, J., Wu, H., & Xu, Z. (2022). Spatiotemporal patterns of maize drought stress and their effects on biomass in the Northeast and North China Plain from 2000 to 2019. Agricultural and Forest Meteorology, 315, 108821.
    Wang, C., Qi, S., Niu, Z., & Wang, J. (2004). Evaluating soil moisture status in China using the temperature–vegetation dryness index (TVDI). Canadian Journal of Remote Sensing, 30(5), 671-679.
    Wang, F., Lai, H., Li, Y., Feng, K., Zhang, Z., Tian, Q., Zhu, X., & Yang, H. (2022). Identifying the status of groundwater drought from a GRACE mascon model perspective across China during 2003–2018. Agricultural Water Management, 260, 107251.
    West, H., Quinn, N., & Horswell, M. (2019). Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sensing of Environment, 232, 111291.
    Wilhite, D., & Glantz, M. (1985). Understanding: The drought phenomenon: The role of definitions. . Water International 10(3), 111-120.
    Xin, J., Tian, G., Liu, Q., & Chen, L. (2006). Combining vegetation index and remotely sensed temperature for estimation of soil moisture in China. International Journal of Remote Sensing, 27(10), 2071-2075.
    Xu, Y., Zhu, X., Cheng, X., Gun, Z., Lin, J., Zhao, J., ... & Zhou, C. (2022). Drought assessment of China in 2002–2017 based on a comprehensive drought index. Agricultural and Forest Meteorology, 319, 108922.
    Yeh, H. F. (2021). Spatiotemporal variation of the meteorological and groundwater droughts in central Taiwan. Frontiers in Water, 3, 636792.
    Yeh, H. F., & Chang, C. F. (2019). Using standardized groundwater index and standardized precipitation index to assess drought characteristics of the Kaoping River Basin, Taiwan. Water resources, 46, 670-678.
    Yeh, H. F., & Hsu, H. L. (2019). Stochastic model for drought forecasting in the Southern Taiwan Basin. Water, 11(10), 2041.
    Yeh, H. F., Chang, J. C., Huang, C. C., & Chen, H. Y. (2022). Spatial correlation of groundwater level with natural factors using geographically weighted regression model in the Choushui River Alluvial Fan, Taiwan. Frontiers in Earth Science, 10, 977611.
    Yeh, H. F., Lin, X. Y., Huang, C. C., & Chen, H. Y. (2024). A Meteorological Drought Migration Model for Assessing the Spatiotemporal Paths of Drought in the Choushui River Alluvial Fan, Taiwan. Geosciences, 14(4), 106.
    Yin, G., & Zhang, H. (2023). A new integrated index for drought stress monitoring based on decomposed vegetation response factors. Journal of Hydrology, 618, 129252.
    Yu, H., Zhang, Q., Xu, C.-Y., Du, J., Sun, P., Hu, P., (2019). Modified palmer drought severity index: model improvement and application. J. Environ. Int. 130, 104951.
    Zanter, K. (2019). USGS Landsat 8 (L8) Data Users Handbook.
    Zhang, F., Zhang, L. W., Jing-Jing, S. H. I., & HUANG, J. F. (2014). Soil moisture monitoring based on land surface temperature-vegetation index space derived from MODIS data. Pedosphere, 24(4), 450-460.
    Zhang, L., Guo, X., Zhao, T., Gong, S., Xu, X., Li, Y., Luo, L., Gui, K.e., Wang, H., Zheng, Y. u., Yin, X., (2019). A modelling study of the terrain effects on haze pollution in the Sichuan Basin. J. Atmospheric Environ. 196, 77–85.
    Zhang, X., Chen, N., Li, J., Chen, Z., & Niyogi, D. (2017). Multi-sensor integrated framework and index for agricultural drought monitoring. Remote Sensing of Environment, 188, 141-163.
    Zhang, X., Hao, Z., Singh, V. P., Zhang, Y., Feng, S., Xu, Y., & Hao, F. (2022). Drought propagation under global warming: Characteristics, approaches, processes, and controlling factors. Science of the Total Environment, 838, 156021.
    Zhang, Y., Feng, X., Fu, B., Chen, Y., & Wang, X. (2021). Satellite-observed global terrestrial vegetation production in response to water availability. Remote Sensing, 13(7), 1289.
    Zhang, Z., Chen, X., Xu, C. Y., Hong, Y., Hardy, J., & Sun, Z. (2015). Examining the influence of river–lake interaction on the drought and water resources in the Poyang Lake basin. Journal of Hydrology, 522, 510-521.
    Zhao, X., Xia, H., Pan, L., Song, H., Niu, W., Wang, R., ... & Qin, Y. (2021). Drought monitoring over Yellow River basin from 2003–2019 using reconstructed MODIS land surface temperature in Google Earth Engine. Remote Sensing, 13(18), 3748.
    Zormand, S., Jafari, R., & Koupaei, S. S. (2017). Assessment of PDI, MPDI and TVDI drought indices derived from MODIS Aqua/Terra Level 1B data in natural lands. Natural Hazards, 86, 757-777.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE