| 研究生: |
游上輝 Yu, Shang-Hui |
|---|---|
| 論文名稱: |
利用奈米壓印拉伸聚碳酸酯奈米柱結構應用於高效率膀胱上皮癌細胞捕獲 Highly Efficient Capture of Bladder Epithelial Cancer Cells By Stretched Polycarbonate Nanopillars |
| 指導教授: |
林俊宏
Lin, Chun-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 75 |
| 中文關鍵詞: | 聚碳酸酯 、奈米結構拉伸 、膀胱癌細胞捕獲 、區域性表面電漿共振 、生物感測器 |
| 外文關鍵詞: | bladder cancer cell, polycarbonate, nanoimprint |
| 相關次數: | 點閱:118 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在循環腫瘤細胞的捕獲研究中,由於檢體中細胞數量很少,所以造成細胞捕獲上非常困難,而近年來使用的檢測方式捕獲效率也不高,且檢測方法也相當耗時、昂貴,因此近年越來越多研究奈米結構對於細胞的影響,且有研究證明奈米結構能夠提升細胞抓取。因此,本研究中希望使用簡單快速的方法進行聚碳酸酯材料拉伸結構的製作,並討論在不同溫度下奈米結構的拉伸效果,之後利用高度提升後的聚碳酸酯拉伸結構進行膀胱癌細胞的捕抓,比較有無結構、親水性處理、不同結構高度,以及細胞培養環境的探討,最後想藉由區域性表面電漿共振量測折射率變化的方式,進一步輔助驗證使用拉伸結構實驗的結果。
最後,本研究中成功地將奈米柱高度提升至原先高度的兩倍,且應用在癌細胞捕獲上,與正常細胞的貼附比也可達到6倍的差異,以及使用懸浮之奈米金圓盤結構在量測到106個癌細胞能有明顯的位移結果。
In this study, we used a simple method to fabricate high aspect ratio polymer nanohairs on polycarbonate substrate by nanoimprint. The height of the PC nanopillars could be stretched to twice of their original size. The attachment rate of T24 cells are above 40% in PBS by the stretched PC substrate.
1. M. L. PAIK, M. J. SCOLIERI, S. L. Brown, J. P. SPIRNAK, and M. I. RESNICK, "Limitations of computerized tomography in staging invasive bladder cancer before radical cystectomy," The Journal of urology 163, 1693-1696 (2000).
2. C. L. Morgan, R. Calkins, and E. Cavalcanti, "Computed tomography in the evaluation, staging, and therapy of carcinoma of the bladder and prostate," Radiology 140, 751-761 (1981).
3. A. S. Kibel, F. Dehdashti, M. D. Katz, A. P. Klim, R. L. Grubb, P. A. Humphrey, C. Siegel, D. Cao, F. Gao, and B. A. Siegel, "Prospective study of [18F] fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder carcinoma," Journal of Clinical Oncology 27, 4314-4320 (2009).
4. A. Tekes, I. Kamel, K. Imam, G. Szarf, M. Schoenberg, K. Nasir, R. Thompson, and D. Bluemke, "Dynamic MRI of bladder cancer: evaluation of staging accuracy," American Journal of Roentgenology 184, 121-127 (2005).
5. M. Amendola, G. Glazer, H. Grossman, A. Aisen, and I. Francis, "Staging of bladder carcinoma: MRI-CT-surgical correlation," American Journal of Roentgenology 146, 1179-1183 (1986).
6. J. Barentsz, G. Jager, J. Witjes, and J. Ruijs, "Primary staging of urinary bladder carcinoma: the role of MRI and a comparison with CT," European radiology 6, 129-133 (1996).
7. K. Berg, P. Selbo, A. Weyergang, A. Dietze, L. Prasmickaite, A. Bonsted, B. Engesaeter, E. ANGELL‐PETERSEN, T. Warloe, and N. Frandsen, "Porphyrin‐related photosensitizers for cancer imaging and therapeutic applications," Journal of microscopy 218, 133-147 (2005).
8. A. Bashkatov, E. Genina, V. Kochubey, and V. Tuchin, "Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm," Journal of Physics D: Applied Physics 38, 2543 (2005).
9. S.-L. Chen, Z. Xie, L. J. Guo, and X. Wang, "A fiber-optic system for dual-modality photoacoustic microscopy and confocal fluorescence microscopy using miniature components," Photoacoustics 1, 30-35 (2013).
10. C. H. Chen, Y.-J. Wu, and J.-J. Chen, "Photo-thermal therapy of bladder cancer with Anti-EGFR antibody conjugated gold nanoparticles," Frontiers in bioscience (Landmark edition) 21, 1211-1221 (2015).
11. X. Yang, L.-J. Su, F. G. La Rosa, E. E. Smith, S. K. Cho, B. Kavanagh, W. Park, and T. W. Flaig, "Thermal ablative therapy with novel gold nanorods in an orthotopic model of urinary bladder cancer," Cancer Research 74, 2728-2728 (2014).
12. P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer, "Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications," Chemical reviews 99, 2293-2352 (1999).
13. A. Louie, "Multimodality imaging probes: design and challenges," Chemical reviews 110, 3146-3195 (2010).
14. Y. w. Jun, J. H. Lee, and J. Cheon, "Chemical design of nanoparticle probes for high‐performance magnetic resonance imaging," Angewandte Chemie International Edition 47, 5122-5135 (2008).
15. B. W. Van Rhijn, H. G. Van der Poel, and T. H. van Der Kwast, "Urine markers for bladder cancer surveillance: a systematic review," European urology 47, 736-748 (2005).
16. B. R. Konety, "Molecular markers in bladder cancer: A critical appraisal," Urologic Oncology: Seminars and Original Investigations 24, 326-337 (2006).
17. H. Boman, H. Hedelin, and S. HOLMäNG, "Four bladder tumor markers have a disappointingly low sensitivity for small size and low grade recurrence," The Journal of urology 167, 80-83 (2002).
18. H. B. Grossman, E. Messing, M. Soloway, K. Tomera, G. Katz, Y. Berger, and Y. Shen, "Detection of bladder cancer using a point-of-care proteomic assay," Jama 293, 810-816 (2005).
19. H. B. Grossman, M. Soloway, E. Messing, G. Katz, B. Stein, V. Kassabian, and Y. Shen, "Surveillance for recurrent bladder cancer using a point-of-care proteomic assay," Jama 295, 299-305 (2006).
20. S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell, D. Irimia, L. Ulkus, M. R. Smith, E. L. Kwak, S. Digumarthy, and A. Muzikansky, "Isolation of rare circulating tumour cells in cancer patients by microchip technology," Nature 450, 1235-1239 (2007).
21. J. Kaiser, "Cancer's circulation problem," Science 327, 1072-1074 (2010).
22. D. Di Carlo, N. Aghdam, and L. P. Lee, "Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays," Analytical chemistry 78, 4925-4930 (2006).
23. S. J. Tan, R. L. Lakshmi, P. Chen, W.-T. Lim, L. Yobas, and C. T. Lim, "Versatile label free biochip for the detection of circulating tumor cells from peripheral blood in cancer patients," Biosensors and Bioelectronics 26, 1701-1705 (2010).
24. J. P. Thiery, "Epithelial–mesenchymal transitions in tumour progression," Nature Reviews Cancer 2, 442-454 (2002).
25. L. Yang, J. C. Lang, P. Balasubramanian, K. R. Jatana, D. Schuller, A. Agrawal, M. Zborowski, and J. J. Chalmers, "Optimization of an enrichment process for circulating tumor cells from the blood of head and neck cancer patients through depletion of normal cells," Biotechnology and bioengineering 102, 521-534 (2009).
26. N. Sun, J. Wang, L. Ji, S. Hong, J. Dong, Y. Guo, K. Zhang, and R. Pei, "A Cellular Compatible Chitosan Nanoparticle Surface for Isolation and In Situ Culture of Rare Number CTCs," Small 11, 5444-5451 (2015).
27. W. Chen, S. Weng, F. Zhang, S. Allen, X. Li, L. Bao, R. H. Lam, J. A. Macoska, S. D. Merajver, and J. Fu, "Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies," ACS nano 7, 566-575 (2012).
28. Y. Wan, M. Winter, B. Delalat, J. E. Hardingham, P. K. Grover, J. Wrin, N. H. Voelcker, T. J. Price, and B. Thierry, "Nanostructured polystyrene well plates allow unbiased high-throughput characterization of circulating tumor cells," ACS applied materials & interfaces 6, 20828-20836 (2014).
29. G.-S. Park, H. Kwon, D. W. Kwak, S. Y. Park, M. Kim, J.-H. Lee, H. Han, S. Heo, X. S. Li, and J. H. Lee, "Full surface embedding of gold clusters on silicon nanowires for efficient capture and photothermal therapy of circulating tumor cells," Nano letters 12, 1638-1642 (2012).
30. J. Sekine, S. C. Luo, S. Wang, B. Zhu, H. R. Tseng, and H. h. Yu, "Functionalized conducting polymer nanodots for enhanced cell capturing: the synergistic effect of capture agents and nanostructures," Advanced Materials 23, 4788-4792 (2011).
31. X. Liu, L. Chen, H. Liu, G. Yang, P. Zhang, D. Han, S. Wang, and L. Jiang, "Bio-inspired soft polystyrene nanotube substrate for rapid and highly efficient breast cancer-cell capture," NPG Asia Materials 5, e63 (2013).
32. Y. S. Hsiao, S. C. Luo, S. Hou, B. Zhu, J. Sekine, C. W. Kuo, D. Y. Chueh, H. h. Yu, H. R. Tseng, and P. Chen, "3D Bioelectronic Interface: Capturing Circulating Tumor Cells onto Conducting Polymer‐Based Micro/Nanorod Arrays with Chemical and Topographical Control," Small 10, 3012-3017 (2014).
33. H. Walter, S. C. Adam, M. Danielle, A. Mukti, and J. L. Kevin, "Inhibited cell spreading on polystyrene nanopillars fabricated by nanoimprinting and in situ elongation," Nanotechnology 21, 385301 (2010).
34. D.-H. Kim, K. Han, K. Gupta, K. W. Kwon, K.-Y. Suh, and A. Levchenko, "Mechanosensitivity of fibroblast cell shape and movement to anisotropic substratum topography gradients," Biomaterials 30, 5433-5444 (2009).
35. J. Y. Lim and H. J. Donahue, "Cell sensing and response to micro-and nanostructured surfaces produced by chemical and topographic patterning," Tissue engineering 13, 1879-1891 (2007).
36. K. Diehl, J. Foley, P. Nealey, and C. Murphy, "Nanoscale topography modulates corneal epithelial cell migration," Journal of Biomedical Materials Research Part A 75, 603-611 (2005).
37. K. Chatterjee, S. Lin-Gibson, W. E. Wallace, S. H. Parekh, Y. J. Lee, M. T. Cicerone, M. F. Young, and C. G. Simon, "The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening," Biomaterials 31, 5051-5062 (2010).
38. L. He, Q. Zuo, Y. Shi, and W. Xue, "Microstructural characteristics and crystallization behaviors of poly (l‐lactide) scaffolds by thermally induced phase separation," Journal of Applied Polymer Science 131(2014).
39. C. P. Grey, S. T. Newton, G. L. Bowlin, T. W. Haas, and D. G. Simpson, "Gradient fiber electrospinning of layered scaffolds using controlled transitions in fiber diameter," Biomaterials 34, 4993-5006 (2013).
40. E. Vatankhah, D. Semnani, M. P. Prabhakaran, M. Tadayon, S. Razavi, and S. Ramakrishna, "Artificial neural network for modeling the elastic modulus of electrospun polycaprolactone/gelatin scaffolds," Acta biomaterialia 10, 709-721 (2014).
41. A. M. Thomas, M. B. Kubilius, S. J. Holland, S. K. Seidlits, R. M. Boehler, A. J. Anderson, B. J. Cummings, and L. D. Shea, "Channel density and porosity of degradable bridging scaffolds on axon growth after spinal injury," Biomaterials 34, 2213-2220 (2013).
42. N. Annabi, J. W. Nichol, X. Zhong, C. Ji, S. Koshy, A. Khademhosseini, and F. Dehghani, "Controlling the porosity and microarchitecture of hydrogels for tissue engineering," Tissue Engineering Part B: Reviews 16, 371-383 (2010).
43. S. Gorelick, V. A. Guzenko, J. Vila-Comamala, and C. David, "Direct e-beam writing of dense and high aspect ratio nanostructures in thick layers of PMMA for electroplating," Nanotechnology 21, 295303 (2010).
44. H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. Kim, and P. Nealey, "Sub-50 nm period patterns with EUV interference lithography," Microelectronic Engineering 67, 56-62 (2003).
45. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Imprint lithography with 25-nanometer resolution," Science 272, 85 (1996).
46. L. J. Guo, "Nanoimprint Lithography: Methods and Material Requirements," Advanced Materials 19, 495-513 (2007).
47. S. H. Ahn and L. J. Guo, "High‐speed roll‐to‐roll nanoimprint lithography on flexible plastic substrates," Advanced materials 20, 2044-2049 (2008).
48. H. Lee, S. Hong, K. Yang, and K. Choi, "Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography," Applied physics letters 88, 143112 (2006).
49. A. G. Brolo, "Plasmonics for future biosensors," Nature Photonics 6, 709-713 (2012).
50. M. Manzano, P. Vizzini, K. Jia, P.-M. Adam, and R. E. Ionescu, "Development of localized surface plasmon resonance biosensors for the detection of Brettanomyces bruxellensis in wine," Sensors and Actuators B: Chemical 223, 295-300 (2016).
51. J. Yang, A. Moraillon, A. Siriwardena, R. Boukherroub, F. Ozanam, A. C. Gouget-Laemmel, and S. Szunerits, "Carbohydrate Microarray for the Detection of Glycan–Protein Interactions Using Metal-Enhanced Fluorescence," Analytical Chemistry 87, 3721-3728 (2015).
52. W. P. Hall, S. N. Ngatia, and R. P. Van Duyne, "LSPR Biosensor Signal Enhancement Using Nanoparticle−Antibody Conjugates," The Journal of Physical Chemistry C 115, 1410-1414 (2011).
53. F. Liu, M. M.-K. Wong, S.-K. Chiu, H. Lin, J. C. Ho, and S. W. Pang, "Effects of nanoparticle size and cell type on high sensitivity cell detection using a localized surface plasmon resonance biosensor," Biosensors and Bioelectronics 55, 141-148 (2014).
54. X. Zhao, M. M.-K. Wong, S.-K. Chiu, and S. W. Pang, "Effects of three-layered nanodisk size on cell detection sensitivity of plasmon resonance biosensors," Biosensors and Bioelectronics 74, 799-807 (2015).
55. Y. X. and and G. M. Whitesides, "SOFT LITHOGRAPHY," Annual Review of Materials Science 28, 153-184 (1998).
56. Y. Hirai, S. Yoshida, and N. Takagi, "Defect analysis in thermal nanoimprint lithography," Journal of Vacuum Science & Technology B 21, 2765-2770 (2003).
57. M. Bender, M. Otto, B. Hadam, B. Vratzov, B. Spangenberg, and H. Kurz, "Fabrication of nanostructures using a UV-based imprint technique," Microelectronic Engineering 53, 233-236 (2000).
58. H. Schift, "Nanoimprint lithography: An old story in modern times? A review," Journal of Vacuum Science & Technology B 26, 458-480 (2008).
59. H. E. Jeong, S. H. Lee, P. Kim, and K. Y. Suh, "Stretched Polymer Nanohairs by Nanodrawing," Nano Letters 6, 1508-1513 (2006).
60. S. Wu, Polymer interface and adhesion (M. Dekker, New York, 1982).
61. W. Jiang, L. Wang, H. Liu, H. Ma, H. Tian, B. Chen, Y. Shi, L. Yin, and Y. Ding, "Bio-inspired directional high-aspect-ratio nanopillars: fabrication and actuation," RSC Advances 4, 42002-42008 (2014).
62. H. E. Jeong, J.-K. Lee, H. N. Kim, S. H. Moon, and K. Y. Suh, "A nontransferring dry adhesive with hierarchical polymer nanohairs," Proceedings of the National Academy of Sciences 106, 5639-5644 (2009).
63. H. E. Jeong and K. Y. Suh, "Nanohairs and nanotubes: Efficient structural elements for gecko-inspired artificial dry adhesives," Nano Today 4, 335-346 (2009).
64. M. K. Kwak, H.-E. Jeong, T.-i. Kim, H. Yoon, and K. Y. Suh, "Bio-inspired slanted polymer nanohairs for anisotropic wetting and directional dry adhesion," Soft Matter 6, 1849-1857 (2010).
65. J. S. Choi, S. J. Lee, G. J. Christ, A. Atala, and J. J. Yoo, "The influence of electrospun aligned poly (epsilon-caprolactone)/collagen nanofiber meshes on the formation of self-aligned skeletal muscle myotubes," Biomaterials 29, 2899-2906 (2008).
66. E. K. Yim, S. W. Pang, and K. W. Leong, "Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage," Experimental cell research 313, 1820-1829 (2007).
67. D. Ning, B. Duong, G. Thomas, Y. Qiao, L. Ma, Q. Wen, and M. Su, "Mechanical and morphological analysis of cancer cells on nanostructured substrates," Langmuir 32, 2718-2723 (2016).
68. K. S. Beckwith, S. P. Cooil, J. W. Wells, and P. Sikorski, "Tunable high aspect ratio polymer nanostructures for cell interfaces," Nanoscale 7, 8438-8450 (2015).
69. Y.-S. Park, S. Y. Yoon, J. S. Park, and J. S. Lee, "Deflection induced cellular focal adhesion and anisotropic growth on vertically aligned silicon nanowires with differing elasticity," NPG Asia Materials 8, e249 (2016).
70. A. van de Stolpe, K. Pantel, S. Sleijfer, L. W. Terstappen, and J. M. Den Toonder, "Circulating tumor cell isolation and diagnostics: toward routine clinical use," Cancer research 71, 5955-5960 (2011).
71. K. Pantel, R. H. Brakenhoff, and B. Brandt, "Detection, clinical relevance and specific biological properties of disseminating tumour cells," Nature Reviews Cancer 8, 329-340 (2008).
72. M. Lin, J.-F. Chen, Y.-T. Lu, Y. Zhang, J. Song, S. Hou, Z. Ke, and H.-R. Tseng, "Nanostructure embedded microchips for detection, isolation, and characterization of circulating tumor cells," Accounts of chemical research 47, 2941-2950 (2014).
73. D. J. Collins, B. Morahan, J. Garcia-Bustos, C. Doerig, M. Plebanski, and A. Neild, "Two-dimensional single-cell patterning with one cell per well driven by surface acoustic waves," Nature communications 6(2015).
74. J. Mou, P. Li, C. Liu, H. Xu, L. Song, J. Wang, K. Zhang, Y. Chen, J. Shi, and H. Chen, "Ultrasmall Cu2‐xS Nanodots for Highly Efficient Photoacoustic Imaging‐Guided Photothermal Therapy," Small 11, 2275-2283 (2015).
75. Y. Gao, Y. Li, Y. Wang, Y. Chen, J. Gu, W. Zhao, J. Ding, and J. Shi, "Controlled synthesis of multilayered gold nanoshells for enhanced photothermal therapy and SERS detection," Small 11, 77-83 (2015).
76. M. Alba, B. Delalat, P. Formentín, M. L. Rogers, L. F. Marsal, and N. H. Voelcker, "Silica Nanopills for Targeted Anticancer Drug Delivery," Small 11, 4626-4631 (2015).
77. X. R. Song, X. Wang, S. X. Yu, J. Cao, S. H. Li, J. Li, G. Liu, H. H. Yang, and X. Chen, "Co9Se8 Nanoplates as a New Theranostic Platform for Photoacoustic/Magnetic Resonance Dual‐Modal‐Imaging‐Guided Chemo‐Photothermal Combination Therapy," Advanced Materials 27, 3285-3291 (2015).
78. S. Wang, Y. Wan, and Y. Liu, "Effects of nanopillar array diameter and spacing on cancer cell capture and cell behaviors," Nanoscale 6, 12482-12489 (2014).
79. B. Cheng, H. Song, S. Wang, C. Zhang, B. Wu, Y. Chen, F. Chen, and B. Xiong, "Quantification of rare cancer cells in patients with gastrointestinal cancer by nanostructured substrate," Translational oncology 7, 720-725 (2014).
80. S. Wang, H. Wang, J. Jiao, K. J. Chen, G. E. Owens, K. i. Kamei, J. Sun, D. J. Sherman, C. P. Behrenbruch, and H. Wu, "Three‐Dimensional Nanostructured Substrates toward Efficient Capture of Circulating Tumor Cells," Angewandte Chemie 121, 9132-9135 (2009).
81. F. Zhang, Y. Jiang, X. Liu, J. Meng, P. Zhang, H. Liu, G. Yang, G. Li, L. Jiang, and L.-J. Wan, "Hierarchical Nanowire Arrays as Three-Dimensional Fractal Nanobiointerfaces for High Efficient Capture of Cancer Cells," Nano letters 16, 766-772 (2015).
82. N. Sun, X. Li, Z. Wang, R. Zhang, J. Wang, K. Wang, and R. Pei, "A Multiscale TiO2 Nanorod Array for Ultrasensitive Capture of Circulating Tumor Cells," ACS applied materials & interfaces (2016).
83. F. Wei, P. Patel, W. Liao, K. Chaudhry, L. Zhang, M. Arellano-Garcia, S. Hu, D. Elashoff, H. Zhou, and S. Shukla, "Electrochemical sensor for multiplex biomarkers detection," Clinical Cancer Research 15, 4446-4452 (2009).
84. I. Ivanov, J. Stojcic, A. Stanimirovic, E. Sargent, R. K. Nam, and S. O. Kelley, "Chip-Based Nanostructured Sensors Enable Accurate Identification and Classification of Circulating Tumor Cells in Prostate Cancer Patient Blood Samples," Analytical Chemistry 85, 398-403 (2013).
85. C.-Y. Chiang, C.-C. Pan, H.-Y. Chang, M.-D. Lai, T.-S. Tzai, Y.-S. Tsai, P. Ling, H.-S. Liu, B.-F. Lee, and H.-L. Cheng, "SH3BGRL3 Protein As A Potential Prognostic Biomarker For Urothelial Carcinoma: A novel binding partner of epidermal growth factor receptor," Clinical Cancer Research 21, 5601-5611 (2015).
86. E. A. Coronado, E. R. Encina, and F. D. Stefani, "Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale," Nanoscale 3, 4042-4059 (2011).
87. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment," The Journal of Physical Chemistry B 107, 668-677 (2003).
88. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, "Enhanced nanoplasmonic optical sensors with reduced substrate effect," Nano letters 8, 3893-3898 (2008).
89. A. Manjavacas and F. G. de Abajo, "Tunable plasmons in atomically thin gold nanodisks," Nature communications 5(2014).
90. P. Kvasnička and J. Homola, "Optical sensors based on spectroscopy of localized surface plasmons on metallic nanoparticles: sensitivity considerations," Biointerphases 3, FD4-FD11 (2008).
91. Y. B. Zheng, B. K. Juluri, X. Mao, T. R. Walker, and T. J. Huang, "Systematic investigation of localized surface plasmon resonance of long-range ordered Au nanodisk arrays," Journal of Applied Physics 103, 014308 (2008).
92. C.-C. Liang, C.-H. Lin, T.-C. Cheng, J. Shieh, and H.-H. Lin, "Nanoimprinting of Flexible Polycarbonate Sheets with a Flexible Polymer Mold and Application to Superhydrophobic Surfaces," Advanced Materials Interfaces 2, 150030 (2015).
93. C.-H. Lin, H.-L. Chen, W.-C. Chao, C.-I. Hsieh, and W.-H. Chang, "Optical Characterization of Two-dimensional Photonic Crystals Based on Spectroscopic Ellipsometry with Rigorous Coupled-Wave Analysis," pp. 1798-1804.
94. H. Philipp and E. Palik, "Silicon dioxide (SiO2)(glass), Handbook of optical Constants of Solids," ED Palik, 749-763 (1985).
95. D. H. Goldstein, Polarized light (CRC Press, 2016).
96. M. Mansuripur, Classical optics and its applications (Cambridge University Press, 2002).
97. Y. Xia and G. M. Whitesides, "Soft lithography," Annual review of materials science 28, 153-184 (1998).
98. T. T. Truong, R. Lin, S. Jeon, H. H. Lee, J. Maria, A. Gaur, F. Hua, I. Meinel, and J. A. Rogers, "Soft lithography using acryloxy perfluoropolyether composite stamps," Langmuir 23, 2898-2905 (2007).
99. T. Takahashi, Y. Takasawa, T. Gowa, S. Okubo, T. Sasaki, T. Miura, A. Oshima, S. Tagawa, and M. Washio, "Study on UV/EB nanoimprint lithography using nano-/micro-fabricated crosslinked PTFE mold," Journal of Photopolymer Science and Technology 23, 69-74 (2010).
100. C.-C. Liang, W.-H. Chang, and C.-H. Lin, "Nanotransfer printing of plasmonic nano-pleat arrays with ultra-reduced nanocavity width using perfluoropolyether molds," Journal of Materials Chemistry C 4, 4491-4504 (2016).
101. S.-C. Wang, C.-C. Huang, C.-H. Shen, L.-C. Lin, P.-W. Zhao, S.-Y. Chen, Y.-C. Deng, and Y.-W. Liu, "Gene Expression and DNA Methylation Status of Glutathione <italic>S</italic>-Transferase Mu1 and Mu5 in Urothelial Carcinoma," PLoS ONE 11, e0159102 (2016).
102. A. M. P. Pardo, M. Bryhan, H. Krasnow, N. Hardin, M. Riddle, O. LaChance, P. Gagnon, T. Upton, and D. S. Hoover, "Corning® CellBIND® Surface: An Improved Surface for Enhanced Cell Attachment."