| 研究生: |
石明哲 Shih, Ming-Che |
|---|---|
| 論文名稱: |
晶種對YAG粉末之生成影響研究 Seeding effects on the synthesis of YAG (Y3Al5O12) powders |
| 指導教授: |
顏富士
Yen, Fu-Su |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 釔鋁石榴石 、添加晶種 、均勻度 |
| 外文關鍵詞: | seeding, YAG, homogeneity |
| 相關次數: | 點閱:103 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於現階段工業上製造YAG粉末之方式,大部分使用Y2O3與α-Al2O3以固態反應法1600 ℃合成,反應過程一般會依序出現中間相YAM及YAP。因此本研究欲減低生產時所需之能耗,以低溫、經濟及環保之方式,藉由添加晶種合成YAG純相粉末。本實驗擬添加0、0.2、0.4和0.8 wt%之YAG晶種並造粒後,再施以熱處理觀察其相轉換。結果以0.2~0.4 wt%晶種添加量為較佳,約在1300 ℃即可獲得純相YAG,較工業上所需之高溫降低300 ℃。未添加晶種之系統生成之中間相如前人所觀察到之YAM及YAP,且需在大於1400 ℃才可獲得純相YAG;添加晶種之系統發現有促使YAM低溫大量生成與使YAP相生成不明顯的現象。添加與未添加晶種系統,生成YAG所需活化能分別約為282 kJ/mol以及1231 kJ/mol,證實添加晶種可以降低生成YAG之活化能,兩者之差值應為減少了YAG成核與減低YAM及YAP生成活化能。添加晶種可能使相變反應機制改變為:YAM →YAP(少量且固定)→ YAG。實驗另以添加0.2 wt%晶種條件,改變研磨混合時間觀察起始氧化物之混合均勻度與YAG的生成關係。結果以研磨混合2天之系統在1200 ℃即可合成純相YAG粉末,相較於較短混合時間者,顯示研磨混合時間的延長,可提高起始成分的混合均勻度,而有利於低溫生成YAG粉末。
Due to the fact that the present method of producing YAG powder is performed by solid state reaction using Y2O3 and α-Al2O3 as starting materials at 1600℃,the intermediate phases of YAM and YAP will show up in sequence during the process. This research tends, by seeding, to synthesize the phase-pure YAG powder at lower temperatures with a way of energy-saving, low cost, and pollution free. In this study, the formation temperature of YAG particles is lessened by adding YAG seeds (0, 0.2, 0.4 and 0.8 wt%) in the slurry composed of Y2O3 and α-Al2O3 particles. After spray drying, granules were heated and the phase evolution was examined. It turned out that the addition of seeds between 0.2 to 0.4 wt% is better than the others: the single phase YAG powder is obtained at about 1300℃ and whose reduced temperature is 300℃. Without seeding, the intermediate phases, YAM and YAP, were observed and phase-pure YAG powder only could be obtained at temperatures larger than 1400℃. With seeding, formation of YAM was promoted while YAP was unobvious. The activation energies for YAG formation are 282 and 1231 kJ/mol with respect to the powder system with and without seeds. Indeed, seeding can lower the activation energy of YAG formation. The mechanism of phase transformation may be changed by seeding and undergoes as such way: decreasing activation energies for YAG nucleation and YAP formation(YAM→ a fixed modicum of YAP → YAG). The relationship between homogeneity of starting oxides and formation of YAG crystallites was also observed by altering the duration of mixing of samples with 0.2 wt% seeds. As a result, the 2-day system can synthesize a single phase YAG powder at 1200℃. Compared to the powder system which has shorter time of mixing, it reveals that the homogeneity of incipient ingredient can be raised by prolonging the mixing time, and it is conducive to form YAG crystallites at lower temperatures.
[1] 劉如熹、王健源編著,白光發光二極體製作技術:21世紀人類的新曙光,全華圖書,台灣台北,民國91年。
[2] R.C. Buchanan,”Cerzmic materials for electronics:Processing, properties, and application.”MARCEL DEKKER, INC. NEW YORK.
[3] 溫佑良,不同粒徑釔鋁石榴石摻鈰螢光體之合成與性質研究,國立成功大學材料科學及工程學系碩士論文,民國93年
[4] W.T. Hsu, W.H. Wu, and C.H. Lu, “Synthesis and luminescent properties of nano-sized Y3Al5O12:Eu3+ phosphors. ”Materials Sci. Eng., B 104(2003)1- 44.
[5] H. Wang, L. Gao, and K. Niihara, “Synthesis of nanoscaled yttrium aluminum garnet powder by the co-precipitation method.” Materials Sci. Eng., A 288 (2000) 40- 41.
[6] I. Matsubara, M. Paranthamana, S.W. Allisonb, M.R. Catesb, D.L. Beshearsb, and D.E. Holcombc,”Preparation of Cr-doped Y3Al5O12 phosphors by heterogeneous precipitation methods and their luminescent properties.” Mater. Res. Bull., 35(2000)217–224.
[7] M. Nyman, J. Caruso, and M.J. Hampden-Smith, “Comparison of solid-state and spray-pyrolysis synthesis of yttrium aluminate powders.” J. Am. Ceram. Soc., 80 [5] (1997) 1231-38.
[8] S. Ramanathan, M.B. Kakade, S.K. Roy and K.K. Kutty, ”Processing and characterization of combustion synthesized YAG powders.” Ceramics International, 29(2003)477-484.
[9] Y. Iida, A. Towata, T. Tsugoshi, and M. Furukawa, “In situ Raman Monitoring of low-temperature synthesis of YAG from different starting materials. ”Vibrational Spectroscopy, 19(1999)399-405.
[10] J.G. Li, T. Ikegami, J.H. Lee, T. Mori, and Y. Yajima, “Co-precipitation Synthesis and Sintering of Yttrium Aluminum Garnet (YAG) Powders: The Effect of Precipitant,” J. Eur. Ceram. Soc.,20,(2000)2395-2405.
[11] W.D. Kingery, H.K. Bowen, and D.R. Uhlmann, Introduction to Ceramics, 2nd ed., John Wiley & Sons, Inc., New York, 1976, pp. 333.
[12] G. Vilmin, S. Komarneni, and R. Roy, J. Mater. Sci., 22 (1987) 3556.
[13] G.M. Anilkumar, U.S. Hareesh, A.D. Damodaran, and K.G.K. Warrier, “Effect of seeds on the formation of sol-gel mullite.” Ceram. Inter., 23 (1997) 537.
[14] G. T. Adylov, G. V. Voronov, E. P. Mansurova, L. M. Sigalov, E. M. Urazaeva, and Zh. Neorg. Khtm, “High-temperature powder x-ray diffraction of yttria to melting point.” J. Inorg. Chem. 33, 7, 1867-1869(1988)
[15] C.Klein, C.S.Hurlbut,jr., Manual of mineralogy, John wiley & sons, inc, (1993).
[16] H. Yamane, M. Omori, A. Okubo, and T. Hiral, “High-temperature phase trasition of Y4Al2O9.” J. Am. Ceram. Soc., 76 [9] (1993) 2382-2384.
[17] I. Warshaw and R. Roy,”Stable and metastable equilibria in the systems Y2O3-Al2O3 and Gd2O3-Fe2O3.” J. Am. Ceram. Soc.,42 [9] (1959)434-438.
[18] M. Harada, A. Ue, M. Inoue, X. Guo, and K. Sakural, “Synthesis of YAP:Ce phosphor through a complex polymerizing reaction.” Scripta mater. 44(2001)2243-2246
[19] J.M. Robertson, M.W. Van Tol, J.P.H. Heynen, W.H. Smits and T. de Boer, ”Thin single crystalline phosphor layers grown by liquid phase epitaxy.” Philips J. res. 35[6] (1980)354
[20] J.A. Deluca, “An introduction to luminescence in organic solids.” J. chemical Education, 57[8] (1980)541-545
[21] Wen, H. L. and F. S. Yen, “Growth Characteristics of Boehmite-Derived Ultrafine theta and alpha-Alumina Particles During Phase Transformation,” J. Cryst Growth, 208 (2000) 696-708.
[22] J.L. McArdle and G.L. Messing, “Transformation, microstructure decelopment, and densification in α-Fe2O3 seeded boehmite-derived alumina,” J. Am. Ceram. Soc., 76 [1] (1993)214-22.
[23] M. Kumagai and G.L. Messing, “Controlled transformation of a boehmite sol-gel by α-Al2O3 seeding,” J. Am. Ceram. Soc., 68 [9] (1985)500-505.
[24] 許宇禪,微粒θ-與α-Al2O3混合粉末的熱反應,國立成功大學資源工程學系碩士論文,民國90年。
[25] K. Wefers and M. Bell, “Oxide and hydroxide of alumina.” Aloca Research Lab., Technical Paper No.19(1972)
[26] 張俊龍,奈米級氧化鋁粉末θ→α-Al2O3相轉換活化能研究,國立成功大學資源工程學系碩士論文,民國91年。
[27] H.G. Wang, H. Herman and X. Liu, “Activation energy for crystal growth using isothermal and continuous heating processes.”J. Mater. Sci., 25(1990)2339.
[28] Putnis, A., Introduction to Mineral Sciences, Cambridge University Press (1992).
[29] 蔡富州,以熔鹽法成長釔鋁石榴石單晶粉末之研究,國立成功大學資源工程學系碩士論文,民國79年。
[30] O. Yamaguchi, K. Takeoka, K. Hirota, H. Takano and A. Hayashida, “Formation of alkoxy-derived yttrium aluminium oxides.” J. Mater. Sci., 27(1992)1261-1264.
[31] N.J. Hess, G.D. Maupin, L.A. Chick, D.S. Sunberg and D.E. McCreedy, “Synthesis and crystallization of yttrium-aluminium garnet and related compounds.” J. Mater. Sci., 29(1994)1873-1878.
[32] Y.L. Liu, Z.F. Zhang, B. King, J. Halloran and R. Laine, “Synthesis of yttrium aluminum garnet from yttrium and aluminm isobutyrate precursors.” J. Am. Ceram. Soc., 79 [2] (1996) 385-94.
[33] S.M. Sim, K.A. Kwller and T.I. Mah, “Phase formatin in yttrium aluminum garnet powders synthesized by chemical methods.“J. Mater. Sci., 35(2000)713-717.
[34] T. Tachiwaki, M. Yoshinaka, K. Hirota and T. Ikegami, “Novel synthesis of Y3Al5O12(YAG)leading to transparent ceramics.”Solid State Communications,119(2001)603-606.
[35] Q. Zhang and F. Satio, “Mechanochemical solid reaction of yttrium oxide with alumina leading to the synthesis of yttrium aluminum garnet.” Powder Technology,129(2003)86-91.
[36] L. Wen, X. Sun, Z. Xiu, S. Chen and C.T. Tsai, “Synthesis of nanocrystalline yttria powder and fabrication of transparent YAG ceramics.” J. Eur. Ceram. Soc., 24(2000)2681-2688.
[37] F. Yuan and H. Ryu, “Ce-doped YAG phosphor powder prepared by co-precipitation and heterogeneous precipitation.” Materials Sci. Eng. B107 (2003) 14-18.
[38] 許樹恩、吳泰伯著“X光繞射原理與材料結構分析”中國材料學會,民國82 年。
[39] R.S. Hay, ”Phase transformations and microstructure evolution in sol-gel derived yttrium-aluminum garnet films.” J. Mater. Res., 8(1993)578.
[40] A.E. Zhukovskaya and V.I. Strakhov, ”Influence of the molar ratio pf Y2O3 to Al2O3 on the kinetics of synthesis of yttrium aluminates.” Prikadnoi Khimii, 48(1975)1125.
[41] J.R. Lo and T.Y. Tseng, ”Phase development and activation energy of the Y2O3-Al2O3 system by a modified sol-gel process.”Meter. Chem. Phys.,56 (1998)56-62.