簡易檢索 / 詳目顯示

研究生: 翁韶君
Weng, Shao-Chun
論文名稱: 偶氮染料摻雜於液晶其雷射引致吸附現象之研究
Study of Laser-Induced Adsorption Phenomena of Azo Dye Doped in Liquid Crystal
指導教授: 傅永貴
Fuh, Ying-Guey
共同指導教授: 唐富欽
Tang, Fu-Ching
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 98
中文關鍵詞: 液晶偶氮染料光配向吸附甲基紅
外文關鍵詞: liquid crystal, azo-dye, photo-alignment, adsorption, methyl red
相關次數: 點閱:172下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究偶氮染料摻雜在液晶中藉由照射雷射光引致吸附於基板造成光配向的現象。偶氮染料(如甲基紅)經雷射光照射後於不同基板上具有不同的吸附效果,基板如素玻璃、表面鍍有銦錫氧化物之導電玻璃、表面鍍有銦錫氧化物之塑膠和表面鍍有阻水氧層之塑膠等。利用座滴法測量各基板之表面能,並利用原子力顯微鏡及化學分析電子能譜儀分析基板表面結構,瞭解不同基板何以具有不同吸附效果。結果顯示基板表面的極性表面能對於吸附效果有顯著的影響,極性表面能愈大,則吸附效果愈好。此外,不同雷射光強度也會影響吸附效果,雷射光強度愈大,則吸附速率愈高,但吸附平整度愈低。因此為了提升基板對於偶氮染料的吸附效果,將各種不同基板預先照射不同強度、不同照射時間的氧電漿,以提升基板的極性表面能並改變基板表面結構,發現可以有效提升偶氮染料的吸附效果,使光配向的良率大幅提升。

    The photo-alignment of liquid crystals by laser-induced adsorption in an azo-dye doped liquid crystal (ADDLC) is studied in this work. The adsorption efficiency of azo-dye (methyl red) in a DDLC cell fabricated using different substrates, such as as-clean glass, ITO coated glass, ITO coated PET and barrier coated PET, differs from one another. The surface energies of different substrates are investigated with sessile drop method. The result shows that surface polarity controls the nucleation and initial growth of methyl red adsorption on different surfaces while the laser intensity is responsible for the time required for complete adsorption. It is found that adsorption rate is proportional to the pumping intensity. Yet, the order of the adsorbed dye decreases with increasing laser intensity. Also, the adsorption rate on various cell substrates in order is glass, ITO PET, ITO glass and finally barrier PET. Furthermore, oxygen plasma is applied for modifying the surface condition of different substrates. The morphology of as-formed methyl red layer on different surfaces is highly influenced by oxygen plasma via the change of surface energy, the polar term especially. Therefore, the performance and efficiency of photo-alignment can be enhanced by oxygen plasma treatment.

    摘要 III Abstract IV 誌謝 VI Table of Contents VII List of Tables X List of Figures XI CHAPTER 1 INTRODUCTION 1 CHAPTER 2 REVIEW OF RELATIVE MATERIALS 4 2.1 Liquid crystals (LCs) 4 2.2 Categories of thermotropic liquid crystals 5 2.2.1 Nematic liquid crystals 5 2.2.2 Cholesteric liquid crystals 6 2.2.3 Smectic liquid crystals 7 2.3 Physical properties of liquid crystals 9 2.3.1 Order parameter 9 2.3.2 Elastic continuum 11 2.3.3 Optical anisotropy 13 2.3.4 Dielectric anisotropy 15 2.4 Dichroic dyes (DDs) 16 2.4.1 Order parameter of dichroic dyes 17 2.4.2 Categories of dichroic dyes 19 CHAPTER 3 REVIEW OF THEORIES RELATIVE TO THE STUDY 21 3.1 Light induced molecular reorientation effect 21 3.1.1 Positive Torque Effect –Jánossy Model 21 3.1.2 Negative Torque Effect – Gibbons Model 24 3.1.3 Photo-isomerization 26 3.2 Jones matrix method 27 3.2.1 Jones matrix of a twisted nematic liquid crystal film 28 3.2.2 Gooch-Tarry condition and Mauguin condition 31 3.3 Surface energy 32 3.3.1 Surface energy and wetting 32 3.3.2 Drop shape measurement method 36 3.3.3 Estimation of surface energy of liquid 37 CHAPTER 4 EXPERIMENTS 39 4.1 Materials 39 4.1.1 Nematic liquid crystal: 5CB 39 4.1.2 Azo-dye: methyl red (MR) 40 4.1.3 Polymer film: Polyvinyl alcohol (PVA) 40 4.2 Sample fabrication 41 4.2.1 Cleaning the substrates 41 4.2.2 Film preparation 43 4.2.3 DDLC mixture preparing 43 4.2.4 Sample assembling 44 4.3 Experimental methods 47 4.3.1 Absorption spectrum of DDLC sample 47 4.3.2 MR adsorption dynamics 48 4.4 Analysis approaches 49 4.4.1 Surface energy measurement 50 4.4.2 Surface configuration 51 4.4.3 Surface material analysis 54 CHAPTER 5 RESULTS AND DISCUSSIONS 57 5.1 Absorption spectra of DDLC 57 5.1.1 Probe beam polarization direction 57 5.1.2 Pump beam exposure duration 58 5.2 Single-side photo-alignment: without plasma treatment 60 5.2.1 MR adsorption dynamics on different substrates 60 5.2.2 MR adsorption dynamics via different pumping intensities 64 5.2.3 Surface energies of different substrates 67 5.2.4 Surface morphologies of different substrates 69 5.3 Single-side photo-alignment: with plasma pretreated substrates 73 5.3.1 MR adsorption dynamics on different substrates 73 5.3.2 MR adsorption dynamics via different pumping intensities 76 5.3.3 MR adsorption dynamics on substrates pretreated with different pumping intensities 80 5.3.4 MR adsorption dynamics on substrates pretreated with different plasma durations 81 5.3.5 Surface energies of different substrates 82 5.3.6 Surface morphologies of different substrates 84 5.4 Comparison of plasma-pretreated and non-treated photo-alignment 87 CHAPTER 6 CONCLUSIONS AND FUTURE WORK 91 6.1 Conclusions 91 6.2 Future work 92 Bibliographies 94

    1. S. Chandrasekhar, Liquid Crystals (Cambridge University Press, 1992).
    2. D. W. Berreman, "Alignment of liquid-crystals by grooved surfaces," Mol. Cryst. Liq. Cryst. 23, 215-231 (1973).
    3. H. I. Bechtold, et al., "Rubbing-induced charge domains observed by electrostatic force microscopy: effect on liquid crystal alignment," Liq. Cryst. 30, 591-598 (2003).
    4. I. Jánossy and A. D. Lloyd, "Low-power optical reorientation in dyed nematics," Mol. Cryst. Liq. Cryst. 203, 77-84 (1991).
    5. W. M. Gibbons, et al., "Surface-mediated alignment of nematic liquid-crystals with polarized laser-light," Nature 351, 49-50 (1991).
    6. F. Simoni and O. Francescangeli, "Effects of light on molecular orientation of liquid crystals," J. Phys.-Condes. Matter 11, R439-R487 (1999).
    7. M. Schadt, et al., "Surface-induced parallel alignment of liquid-crystals by linearly polymerized photopolymers," Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 31, 2155-2164 (1992).
    8. M. Schadt, et al., "Photo-generation of linearly polymerized liquid-crystal aligning layers comprising novel, integrated optically patterned retarders and color filters," Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 34, 3240-3249 (1995).
    9. A. G. Dyadyusha, et al., "Light-induced planar alignment of nematic liquid-crystal by the anisotropic surface without mechanical texture," Ukr. Fiz. Zh. 36, 1059-1062 (1991).
    10. M. Nishikawa, B. Taheri, and J. L. West, "Mechanism of unidirectional liquid-crystal alignment on polyimides with linearly polarized ultraviolet light exposure," Appl. Phys. Lett. 72, 2403-2405 (1998).
    11. T. Motohiro and Y. Taga, "Sputter-deposited siox films for liquid-crystal alignment," Thin Solid Films 185, 137-144 (1990).
    12. O. Yaroshchuk, et al., "Planar and tilted uniform alignment of liquid crystals by plasma-treated substrates," Liq. Cryst. 31, 859-869 (2004).
    13. O. Yaroshchuk and Y. Reznikov, "Photoalignment of liquid crystals: basics and current trends," J. Mater. Chem. 22, 286-300 (2012).
    14. I. Janossy and T. Kosa, "Influence of anthraquinone dyes on optical reorientation of nematic liquid-crystals," Opt. Lett. 17, 1183-1185 (1992).
    15. C. R. Lee, et al., "Surface-assisted photoalignment in dye-doped liquid-crystal films," Phys. Rev. E 69(2004).
    16. L. Komitov, et al., "Surface transition in a nematic layer with reverse pretilt," Mol. Cryst. Liq. Cryst. 223, 197-217 (1992).
    17. V. S. U. Fazio and L. Komitov, "Alignment transition in a nematic liquid crystal due to field-induced breaking of anchoring," Europhys. Lett. 46, 38-42 (1999).
    18. K. Ichimura, et al., "Reversible Change In Alignment Mode Of Nematic Liquid-Crystals Regulated Photochemically By Command Surfaces Modified With An Azobenzene Monolayer," Langmuir 4, 1214-1216 (1988).
    19. M. Schadt, H. Seiberle, and A. Schuster, "Optical patterning of multidomain liquid-crystal displays with wide viewing angles," Nature 381, 212-215 (1996).
    20. A. Y. G. Fuh, et al., "Dynamics of laser-induced holographic gratings in dye-doped liquid crystal films," Jpn. J. Appl. Phys. Part 1 - Regul. Pap. Short Notes Rev. Pap. 42, 7344-7348 (2003).
    21. Y. H. Huang, et al., "Modulation of shape and polarization of beam using a liquid crystal q-plate that is fabricated via photo-alignment," Opt. Express 21, 10954-10961 (2013).
    22. S.-T. Sun, W. M. Gibbons, and P. J. Shannon, "Alignment of guest–host liquid crystals with polarized laser light," Liq. Cryst. 12, 869-874 (1992).
    23. T. Y. Marusii, Y. A. Reznikov, and S. S. Slussarenko, "Director response to polarized light excitation of azo-dye-doped liquid crystal in a cell with one isotropic surface," Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. C-Mol. Mat. 6, 163-169 (1996).
    24. J. L. West, L. L. Su, and Y. Reznikov, "Photo-alignment using adsorbed dichroic molecules," Mol. Cryst. Liq. Cryst. 364, 199-210 (2001).
    25. A. Y. G. Fuh, et al., "Laser-induced ripple structure of dopant on the substrates in a dye-doped liquid crystal cell and its alignment effect," Journal of Nonlinear Optical Physics & Materials 11, 57-63 (2002).
    26. V. Chigrinov, et al., "Anchoring properties of photoaligned azo-dye materials," Phys. Rev. E 68(2003).
    27. I. Jánossy, "Molecular interpretation of the absorption-induced optical reorientation of nematic liquid crystals," Phys. Rev. E 49, 2957-2963 (1994).
    28. S.-Y. Huang, S.-T. Wu, and A. Y.-G. Fuh, "Optically switchable twist nematic grating based on a dye-doped liquid crystal film," Appl. Phys. Lett. 88, 041104 (2006).
    29. H. C. Jau, et al., "Photo-rewritable flexible LCD using indium zinc oxide/polycarbonate substrates," Appl. Opt. 50, 213-217 (2011).
    30. E. Ouskova, et al., "Photo-orientation of liquid crystals due to light-induced desorption and adsorption of dye molecules on an aligning surface," Phys. Rev. E 64(2001).
    31. I. C. Khoo, Liquid crystals (Wiley-Interscience, 2007).
    32. P. J. Collings and M. Hird, Introduction to Liquid Crystals: Chemistry and Physics (Taylor & Francis, 1997).
    33. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer New York, 1996).
    34. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon Press, 1993).
    35. S. T. Wu and D. K. Yang, Reflective liquid crystal displays (Wiley, 2001).
    36. F. C. Frank, "On The Theory of Liquid Crystals," Discuss. Faraday Soc., 19-28 (1958).
    37. E. Hecht, Optics (Addison-Wesley, 2002).
    38. G. Heilmeie. and L. A. Zanoni., "Guest-Host Interactions In Nematic Liquid Crystals . A New Electro-Optic Effect," Appl. Phys. Lett. 13, 91 (1968).
    39. A. V. Ivashchenko, Dichroic Dyes for Liquid Crystal Displays (Taylor & Francis, 1994).
    40. I. Jánossy, A. D. Lloyd, and B. S. Wherrett, "Anomalous optical freedericksz transition in an absorbing liquid crystal," Mol. Cryst. Liq. Cryst. incorporating nonlinear optics 179, 1-12 (1990).
    41. H. Dürr and H. Bouas-Laurent, Photochromism: Molecules and systems: Molecules and systems (Elsevier Science, 2003).
    42. S. Monti, G. Orlandi, and P. Palmieri, "Features of the photochemically active state surfaces of azobenzene," Chem. Phys. 71, 87-99 (1982).
    43. T. Ishikawa, T. Noro, and T. Shoda, "Theoretical study on the photoisomerization of azobenzene," J. Chem. Phys. 115, 7503-7512 (2001).
    44. M. Yamauchi, "Jones-matrix models for twisted-nematic liquid-crystal devices," Appl. Opt. 44, 4484-4493 (2005).
    45. A. Yariv and P. Yeh, Optical waves in crystals: Propagation and control of laser radiation (Wiley, 2002).
    46. C. H. Gooch and H. A. Tarry, "Optical-properties of twisted nematic liquid-crystal structures with twist angles less than 90 degrees," J. Phys. D-Appl. Phys. 8, 1575-1584 (1975).
    47. R. Defay, I. Prigogine, and A. Bellemans, Surface Tension and Adsorption (Longmans, 1966).
    48. A. W. Adamson and A. P. Gast, Physical Chemistry of Surfaces (Wiley, 1997).
    49. F. M. Fowkes, "Attractive forces at interfaces," Industrial and Engineering Chemistry 56, 40-52 (1964).
    50. L. A. Girifalco and R. J. Good, "A theory for the estimation of surface and interfacial energies : Derivation and application to interfacial tension," J. Phys. Chem. 61, 904-909 (1957).
    51. D. K. Owens and R. C. Wendt, "Estimation of surface free energy of polymers," J. Appl. Polym. Sci. 13, 1741-1747 (1969).
    52. T. Young, "An essay on the cohesion of fluids," Phil. Trans. R. Soc. Lond 95, 65-87 (1805).
    53. A. W. Neumann, et al., "Equation-of-state approach to determine surface tensions of low-energy solids from contact angles," J. Colloid Interface Sci. 49, 291-304 (1974).
    54. S. Sugden, "A relation between surface tension, density, and chemical composition," J. Chem. Soc. 125, 1177-1189 (1924).
    55. D. W. van Krevelen and K. te Nijenhuis, Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions (Elsevier Science, 2009).
    56. G. J. Lee, D. H. Kim, and M. Y. Lee, "Photophysical properties and photoisomerization processes of methyl-red embedded in rigid polymer," Appl. Opt. 34, 138-143 (1995).
    57. O. Baldovino-Pantaleon, et al., "Anchoring of 4-dimethyl-amino substituted azobenzene dyes doped liquid crystals on substrates," Mol. Cryst. Liq. Cryst. 488, 1-10 (2008).
    58. H. Yao Han, "Axially Symmetrical Liquid Crystal Devices Based on Photo-alignment," (National Cheng Kong University, 2014).
    59. J. Chang, "New physical insights of surfaces/ interfaces for bilayer organic solar cells," (National Cheng Kong University, 2012).
    60. G. Binning, et al., "Surface studies by scanning tunneling microscopy," Phys. Rev. Lett. 49, 57-61 (1982).
    61. G. Binnig, C. F. Quate, and C. Gerber, "Atomic Force Microscope," Phys. Rev. Lett. 56, 930-933 (1986).
    62. W. R. Bowen and N. Hilal, Atomic Force Microscopy in Process Engineering: An Introduction to AFM for Improved Processes and Products (Elsevier Science, 2009).
    63. H. R. Verma, Atomic and Nuclear Analytical Methods: XRF, Mössbauer, XPS, NAA and Ion-Beam Spectroscopic Techniques (Springer, 2007).
    64. W. Urbach, H. Hervet, and F. Rondelez, "On the application of forced rayleigh light-scattering to mass diffusion measurements," J. Chem. Phys. 83, 1877-1887 (1985).
    65. Z. H. Huang, et al., "Influence of plasma treatment of ITO surface on the growth and properties of hole transport layer and the device performance of OLEDs," Org. Electron. 9, 51-62 (2008).
    66. D. J. Milliron, et al., "Surface oxidation activates indium tin oxide for hole injection," J. Appl. Phys. 87, 572-576 (2000).
    67. C. M. Stuart, R. R. Frontiera, and R. A. Mathies, "Excited-state structure and dynamics of cis- and trans-azobenzene from resonance Raman intensity analysis," J. Phys. Chem. A 111, 12072-12080 (2007).
    68. T. H. Lin, et al., "Photoaddressable bistable reflective liquid crystal display," Appl. Phys. Lett. 89(2006).

    下載圖示 校內:2019-08-26公開
    校外:2019-08-26公開
    QR CODE