| 研究生: |
朱正田 Chu, Cheng-Tien |
|---|---|
| 論文名稱: |
對苯甲酸胺鹽酸鹽輔助CH3NH3PbI3交聯應用於平面異質接面鈣鈦礦太陽能電池 p-Aminobenzoic acid hydrochloride assisted crosslinking of CH3NH3PbI3 in planar-heterojunction perovskite solar cells |
| 指導教授: |
溫添進
Wen, Ten-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 鈣鈦礦太陽能電池 、交聯劑 、添加劑 |
| 外文關鍵詞: | perovskite solar cells, crosslinking agent, additive |
| 相關次數: | 點閱:144 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文使用對苯甲酸胺鹽酸鹽做為鈣鈦礦交聯添加劑,於提升鈣鈦礦表面形貌的同時,也透過晶體交聯的機制提升鈣鈦礦太陽能電池於大氣下的穩定性。本研究分為以下兩部分:
第一部分,我們進行對苯甲酸胺鹽酸鹽的合成,並且對產物進行分析與鑑定,確認所得為我們欲得到之產物。接著便透過SEM、XRD等儀器了解添加對苯甲酸胺鹽酸鹽於鈣鈦礦前驅物中,對鈣鈦礦表面形貌的影響。確認對苯甲酸胺鹽酸鹽確實能提升鈣鈦礦表面形貌後,便接著進行元件製程上的調整。使用對苯甲酸胺鹽酸鹽做為交聯添加劑於鈣鈦礦之中,使得鈣鈦礦太陽能元件的平均功率轉換效率由原先未添加時的0.19%上升至10.03%,最佳值分別為0.32%與12.39%。提升相當顯著。將未封裝的鈣鈦礦太陽能元件放置於大氣下進行穩定度量測,未添加的元件放置一天後便幾乎無法運作;有添加對苯甲酸胺鹽酸鹽的元件則放置11天後才會損失其原本50%的功率轉換效率。
第二部分,我們透過NMR、TEM等量測以對苯甲酸胺鹽酸鹽於鈣鈦礦中的角色以及分佈做更進一步地了解。接著透過與對苯甲酸胺鹽酸鹽相似的分子結構應用於鈣鈦礦前驅物中作為添加劑,透過SEM及太陽能元件進行比對,以釐清對苯甲酸胺鹽酸鹽上各官能基的貢獻。
This research focused on using p-ABACl as a crosslinking additive in the precursor of perovskite. p-ABACl can not only improve the surface morpgology of the perovskite but also strengthen the moisture resistance by forming hydrogen bonding and crosslinking the perovskite grains.
In the first part of this research, we synthesized p-ABACl and clarify the composition of the product through NMR and IR. We added p-ABACl into the perovskite precursor and surprisingly found that with p-ABACl as an additive, we could obtain perovskite film simply through one-step fabrication process. With p-ABACl, we could increase the PCE of perovskite solar cells from the average PCE of 0.19% for pristine devices to 10.03% for perovskite with p-ABACl. And their best PCE are 0.32% and 12.39%, respectively. Moreover, in the stability test, the pristine lost almost all of the function after exposing to the air for only one day without any encapsulation. However, the perovskite solar cells lost 50% of their original PCE until exposing to the air for 11 days.
In the second part, we focused on finding the reasonable explanations for the results we had gotten in the first sector of this research. Firstly, we turned to NMR and TEM to elucidate the role of p-ABACl in the precursor solution and the distribution in the solid crystal. To define the function of the different part of p-ABACl molecule, we used some molecules with the similar structure as p-ABACl and analyzed through the SEM and perovskite solar cell devices.
1. K. Kojima. A. Kojima, Y. Shirai, and T. Miyasaka, J. Amer. Chem. Soc. Commun., 131, 6050-6051 (2009)
2. C. D. Bailie, M. G. Christoforo, J. P. Mailoa, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee and M. Grätzel, Energy Environ. Sci., 8, 956-963 (2015)
3. G. E. Eperon, V. M. Burlakov, A. Goriely and H. J. Snaith, ACS Nano, 8, 591-598 (2013)
4. C. Roldán-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho and H. J. Bolink, Energy Environ. Sci., 7, 2968-2973 (2014)
5. O. Phillips, J. M. Schwartz and P. A. Kohl, Polym. Degrad. Stab., 125, 129-139 (2016)
6. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon and H. J. Snaith, Nat. commun., 4, 1-6 (2013)
7. C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G. M. Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddin and H. J. Bolink, Energy Environ. Sci., 7, 994-997 (2014)
8. J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang, ACS Nano, 8, 1674–1680 (2014)
9. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu1, J. Seo1, S. Il Seok, Science, 348, 1234-1237 (2015)
10. X. Zhao and N. G. Park, Photonics, 2, 1139-1151 (2015)
11. G. Kieslich, S. Sun and A. K. Cheetham, Chem. Sci., 5, 4712-4715 (2014)
12. W.-J. Yin, T. Shi and Y. Yan, Applied Physics Letters, 104, 063903 (2014)
13. D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, A. M. Guloy, Science, 267, 1473-1476 (1995)
14. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel and T. J. White, J. Mater. Chem. A, 1, 5628 (2013)
15. P. Umari, E. Mosconi and F. De Angelis, Sci. Rep., 4, 1-7 (2014)
16. T. Umebayashi, K. Asai, T. Kondo and A. Nakao, Phys. Rev. B, 67, 1-6 (2003)
17. B. Qi and J. Wang, J. Mater. Chem., 22, 24315-24325 (2012)
18. B. Qi and J. Wang, Phys. Chem. Chem. Phys., 15, 8972-8982 (2013)
19. D. Bi, P. Gao, R. Scopelliti, E. Oveisi, J. Luo, M. Grätzel, A. Hagfeldt and M. K. Nazeeruddin, Adv. Mater., 28, 2910–2915 (2016)
20. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, Adv. Funct. Mater., 24, 151-157 (2014)
21. A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. Dunbar, A. R. Buckley and D. G. Lidzey, Energy Environ. Sci., 7, 2944-2950 (2014)
22. M. J. Carnie, C. Charbonneau, M. L. Davies, J. Troughton., T. M. Watson, K. Wojciechowski, H. Snaith and D. A. Worsley, Chem. Commun., 49, 7893-7895 (2013)
23. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, Nanoscale, 3, 4088-4093 (2012)
24. Y. Zhao and K. Zhu, J. Phys. Chem. C, 118, 9412-9418 (2014)
25. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 338, 643-647 (2012)
26. J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, Energy Environ. Sci., 6, 1739-1743 (2013)
27. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Science, 342, 341-344 (2013)
28. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo and G. Calestani, Chem. Mater., 25, 4613-4618 (2013)
29. P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin and A. K. Jen, Adv. Mater., 26, 3748-3754 (2014)
30. S. T. Williams, F. Zuo, C. C. Chueh, C. Y. Liao, P. W. Liang and A. K. Jen, ACS Nano, 8, 10640-10654 (2014)
31. F. Di Giacomo, S. Razza, F. Matteocci, A. D'Epifanio, S. Licoccia, T. M. Brown and A. Di Carlo, J. Power Sources, 251, 152-156 (2014)
32. J. Burschka, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature, 499, 316-319 (2013)
33. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao and J. Huang, Energy Environ. Sci., 7, 2619 (2014)
34. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan and J. Huang, Adv. Mater., 26, 6503-6509 (2014)
35. Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li and Y. Yang, J. Am. Chem. Soc., 136, 622-625 (2014)
36. A. Yella, L. P. Heiniger, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nano Lett., 14, 2591-2596 (2014)
37. A. Wakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi, S. Hayase and Y. Murata, Chem. Lett., 43, 711-713 (2014)
38. Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng and L. Han, Energy Environ. Sci., 7, 2934 (2014)
39. C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gaob and J. Huang, J. Mater. Chem. A, 2, 18508-18514 (2014)
40. M. Liu, M. B. Johnston and H. J. Snaith, Nature, 501, 395-398 (2013)
41. F. Yang, M. Shtein and S. R. Forrest, J. Appl. Phys., 98, 014906 (2005)
42. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. G. Weale, U. Bach, Y. B. Cheng and L. Spiccia, Angew. Chem., 53, 9898-9903 (2014)
43. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Nat. Mater., 13, 897-903 (2014)
44. Y. Chen, Y. Zhao and Z. Liang, Chem. Mater., 2015, 27, 1448-1451.
45. J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, ACS Nano, 9, 1955-1963 (2015)
46. J. Zhao, B. Cai, Z. Luo, Y. Dong, Y. Zhang, H. Xu, B. Hong, Y. Yang, L. Li, W. Zhang and C. Gao, Sci. Rep., 6, 1-6 (2016)
47. D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J. R. Durrant and S. A. Haque, Energy Environ. Sci., 9, 1655-1660 (2016)
48. Q. Wang, Q. Dong, T. Li, A. Gruverman and J. Huang, Adv. Mater., 10, 1-6 (2016)
49. J. You, L. Meng, T. B. Song, T. F. Guo, Y. M. Yang, W. H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco and Y. Yang, Nat. Nanotechnol., 11, 75-81 (2016)
50. Z. Zhu, Y. Bai, X. Liu, C. C. Chueh, S. Yang and A. K. Jen, Adv. Mater., 10, 1-7 (2016)
51. Y. Deng, Q. Dong, C. Bi, Y. Yuan and J. Huang, Adv. Energy Mater., 10, 1-7 (2016)
52. H. Back, G. Kim, J. Kim, J. Kong, T. K. Kim, H. Kang, H. Kim, J. Lee, S. Lee and K. Lee, Energy Environ. Sci., 9, 1258-1263 (2016)
53. C. C. Chueh, C. Y. Liao, F. Zuo, S. T. Williams, P. W. Liang and A. K. Y. Jen, J. Mater. Chem. A, 3, 9058-9062 (2015)
54. C. Zuo and L. Ding, Nanoscale, 6, 9935-9938 (2014)
55. J. He and T. Chen, J. Mater. Chem. A, 3, 18514-18520 (2015)
56. A. Mei1, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science, 345, 295-298 (2014)
57. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma and S. Hayase, J. Phys. Chem. C, 118, 16651-16659 (2014)
58. Y. Yang, C. Sun, H. L. Yip, R. Sun and X. Wang, Chem. Asian J., 11, 893-899 (2016)
59. X. Gong, M. Li, X. B. Shi, H. Ma, Z. K. Wang and L. S. Liao, Adv. Funct. Mater., 25, 6671-6678 (2015)
60. I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee and H. I. Karunadasa, Angew. Chem., 53, 11232-11235 (2014)
61. K. M. Boopathi, R. Mohan, T. Y. Huang, W. Budiawan, M. Y. Lin, C. H. Lee, K. C. Ho and C. W. Chu, J. Mater. Chem. A, 4, 1591-1597 (2016)
62. X. Li, M. I. Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. Han and M. Gratzel, Nat. Chem., 7, 703-711 (2015)
63. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 338, 643-647 (2012)
64. M. Samsonowicz, T. Hrynaszkiewicz, R. Świsłocka, E. Regulska and W. Lewandowski, J. Mol. Struct., 744, 345-352 (2005)
65. G. R. Fulmer, A. J. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, Organometallics, 29, 2176-2179 (2010)
66. H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 62, 7512-7515 (1997)
67. J. Bernstein, R. E. Davis, L. Shimoni, N. L. Chang, Angew. Chem., 34, 1555–1573 (1995)
68. C. H. Chiang, Z. L. Tseng and C. G. Wu, J. Mater. Chem. A, 2, 15897-15903 (2014)
69. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin and M. Grätzel, Adv. Funct. Mater., 24, 3250-3258 (2014)
70. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, Adv. Funct. Mater., 24, 151-157 (2014)
71. T. Baikie, N. S. Barrow, Y. Fang, P. J. Keenan, P. R. Slater, R. O. Piltz, M. Gutmann, S. G. Mhaisalkar and T. J. White, J. Mater. Chem. A, 3, 9298-9307 (2015)
72. G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, 147-155 (1994)
73. G. P. Dado and S. H. Gellman, J. Am. Chem. Soc., 116, 1054-1062 (1994)
74. R. D. Shannon, Acta Cryst., 32, 751-767 (1976)