簡易檢索 / 詳目顯示

研究生: 朱正田
Chu, Cheng-Tien
論文名稱: 對苯甲酸胺鹽酸鹽輔助CH3NH3PbI3交聯應用於平面異質接面鈣鈦礦太陽能電池
p-Aminobenzoic acid hydrochloride assisted crosslinking of CH3NH3PbI3 in planar-heterojunction perovskite solar cells
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 92
中文關鍵詞: 鈣鈦礦太陽能電池交聯劑添加劑
外文關鍵詞: perovskite solar cells, crosslinking agent, additive
相關次數: 點閱:144下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這篇論文使用對苯甲酸胺鹽酸鹽做為鈣鈦礦交聯添加劑,於提升鈣鈦礦表面形貌的同時,也透過晶體交聯的機制提升鈣鈦礦太陽能電池於大氣下的穩定性。本研究分為以下兩部分:
    第一部分,我們進行對苯甲酸胺鹽酸鹽的合成,並且對產物進行分析與鑑定,確認所得為我們欲得到之產物。接著便透過SEM、XRD等儀器了解添加對苯甲酸胺鹽酸鹽於鈣鈦礦前驅物中,對鈣鈦礦表面形貌的影響。確認對苯甲酸胺鹽酸鹽確實能提升鈣鈦礦表面形貌後,便接著進行元件製程上的調整。使用對苯甲酸胺鹽酸鹽做為交聯添加劑於鈣鈦礦之中,使得鈣鈦礦太陽能元件的平均功率轉換效率由原先未添加時的0.19%上升至10.03%,最佳值分別為0.32%與12.39%。提升相當顯著。將未封裝的鈣鈦礦太陽能元件放置於大氣下進行穩定度量測,未添加的元件放置一天後便幾乎無法運作;有添加對苯甲酸胺鹽酸鹽的元件則放置11天後才會損失其原本50%的功率轉換效率。
    第二部分,我們透過NMR、TEM等量測以對苯甲酸胺鹽酸鹽於鈣鈦礦中的角色以及分佈做更進一步地了解。接著透過與對苯甲酸胺鹽酸鹽相似的分子結構應用於鈣鈦礦前驅物中作為添加劑,透過SEM及太陽能元件進行比對,以釐清對苯甲酸胺鹽酸鹽上各官能基的貢獻。

    This research focused on using p-ABACl as a crosslinking additive in the precursor of perovskite. p-ABACl can not only improve the surface morpgology of the perovskite but also strengthen the moisture resistance by forming hydrogen bonding and crosslinking the perovskite grains.
    In the first part of this research, we synthesized p-ABACl and clarify the composition of the product through NMR and IR. We added p-ABACl into the perovskite precursor and surprisingly found that with p-ABACl as an additive, we could obtain perovskite film simply through one-step fabrication process. With p-ABACl, we could increase the PCE of perovskite solar cells from the average PCE of 0.19% for pristine devices to 10.03% for perovskite with p-ABACl. And their best PCE are 0.32% and 12.39%, respectively. Moreover, in the stability test, the pristine lost almost all of the function after exposing to the air for only one day without any encapsulation. However, the perovskite solar cells lost 50% of their original PCE until exposing to the air for 11 days.
    In the second part, we focused on finding the reasonable explanations for the results we had gotten in the first sector of this research. Firstly, we turned to NMR and TEM to elucidate the role of p-ABACl in the precursor solution and the distribution in the solid crystal. To define the function of the different part of p-ABACl molecule, we used some molecules with the similar structure as p-ABACl and analyzed through the SEM and perovskite solar cell devices.

    摘要 I Abstract II 致謝 VII 目錄 VIII 表目錄 XII 圖目錄 XIII 符號與縮寫 XVII 第一章 緒論 1 1-1 前言 1 1-2 鈣鈦礦太陽能電池之簡介 3 1-2-1 鈣鈦礦結構與太陽能電池特性分析 3 1-2-2 鈣鈦礦吸光層的製程方法 8 1-2-3 鈣鈦礦太陽能電池的穩定性發展 19 1-3 鈣鈦礦太陽能電池主動層添加劑之文獻回顧 22 1-3-1 主動層添加劑用於提升鈣鈦礦表面形貌 22 1-3-2 主動層添加劑用於提升鈣鈦礦太陽能電池穩定性 25 1-4 研究動機 29 第二章 對苯甲酸胺鹽酸鹽作為交聯添加劑應用於鈣鈦礦太陽能電池 30 2-1 前言 30 2-2 實驗部分 31 2-2-1 藥品來源 31 2-2-2 藥品合成 32 2-2-3 液態核磁共振儀之量測 33 2-2-4 傅里葉轉換紅外光譜之量測 34 2-2-5 原子力顯微鏡 34 2-2-6 X-ray繞射圖譜之量測 35 2-2-7 掃描式電子顯微鏡之量測 35 2-2-8 UV-vis 吸收光譜量測 36 2-2-9 二維表面粗糙度之量測 36 2-2-10 太陽能電池之組裝及量測 37 2-3 實驗結果與討論 43 2-3-1 對苯甲酸胺鹽酸鹽之鑑定 43 2-3-2 對苯甲酸胺鹽酸鹽交聯鈣鈦礦薄膜表面形貌分析 46 2-3-3 退火條件對鈣鈦礦之影響 51 2-3-4 對苯甲酸胺鹽酸鹽添加量對元件特性之影響 54 2-3-5 前驅物濃度對元件特性之影響 58 2-3-6 元件特性於大氣環境穩定性探討 61 2-4 結論 62 第三章 交聯劑對苯甲酸胺鹽酸鹽於鈣鈦礦層之作用機制 63 3-1 前言 63 3-2 實驗部分 64 3-2-1 藥品來源 64 3-2-2 藥品合成 64 3-2-3 液態核磁共振儀之量測 65 3-2-4 穿透式電子顯微鏡之量測 65 3-2-5 掃描式電子顯微鏡之量測 66 3-2-6 X-ray繞射圖譜之量測 66 3-2-7 太陽能電池之組裝及量測 66 3-3 實驗結果與討論 68 3-3-1 對苯甲酸胺鹽酸鹽於鈣鈦礦之核磁共振分析 68 3-3-2 對苯甲酸胺鹽酸鹽於鈣鈦礦之元素分布分析 73 3-3-3 不同添加劑於鈣鈦礦之表面型態之探討 75 結論 86 第四章 總結與建議 87 4-1 總結 87 4-2 未來工作建議 88 參考文獻 89

    1. K. Kojima. A. Kojima, Y. Shirai, and T. Miyasaka, J. Amer. Chem. Soc. Commun., 131, 6050-6051 (2009)
    2. C. D. Bailie, M. G. Christoforo, J. P. Mailoa, A. R. Bowring, E. L. Unger, W. H. Nguyen, J. Burschka, N. Pellet, J. Z. Lee and M. Grätzel, Energy Environ. Sci., 8, 956-963 (2015)
    3. G. E. Eperon, V. M. Burlakov, A. Goriely and H. J. Snaith, ACS Nano, 8, 591-598 (2013)
    4. C. Roldán-Carmona, O. Malinkiewicz, R. Betancur, G. Longo, C. Momblona, F. Jaramillo, L. Camacho and H. J. Bolink, Energy Environ. Sci., 7, 2968-2973 (2014)
    5. O. Phillips, J. M. Schwartz and P. A. Kohl, Polym. Degrad. Stab., 125, 129-139 (2016)
    6. P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon and H. J. Snaith, Nat. commun., 4, 1-6 (2013)
    7. C. Roldán-Carmona, O. Malinkiewicz, A. Soriano, G. M. Espallargas, A. Garcia, P. Reinecke, T. Kroyer, M. I. Dar, M. K. Nazeeruddin and H. J. Bolink, Energy Environ. Sci., 7, 994-997 (2014)
    8. J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T.-B. Song, C. C. Chen, S. Lu, Y. Liu, H. Zhou and Y. Yang, ACS Nano, 8, 1674–1680 (2014)
    9. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu1, J. Seo1, S. Il Seok, Science, 348, 1234-1237 (2015)
    10. X. Zhao and N. G. Park, Photonics, 2, 1139-1151 (2015)
    11. G. Kieslich, S. Sun and A. K. Cheetham, Chem. Sci., 5, 4712-4715 (2014)
    12. W.-J. Yin, T. Shi and Y. Yan, Applied Physics Letters, 104, 063903 (2014)
    13. D. B. Mitzi, S. Wang, C. A. Feild, C. A. Chess, A. M. Guloy, Science, 267, 1473-1476 (1995)
    14. T. Baikie, Y. Fang, J. M. Kadro, M. Schreyer, F. Wei, S. G. Mhaisalkar, M. Graetzel and T. J. White, J. Mater. Chem. A, 1, 5628 (2013)
    15. P. Umari, E. Mosconi and F. De Angelis, Sci. Rep., 4, 1-7 (2014)
    16. T. Umebayashi, K. Asai, T. Kondo and A. Nakao, Phys. Rev. B, 67, 1-6 (2003)
    17. B. Qi and J. Wang, J. Mater. Chem., 22, 24315-24325 (2012)
    18. B. Qi and J. Wang, Phys. Chem. Chem. Phys., 15, 8972-8982 (2013)
    19. D. Bi, P. Gao, R. Scopelliti, E. Oveisi, J. Luo, M. Grätzel, A. Hagfeldt and M. K. Nazeeruddin, Adv. Mater., 28, 2910–2915 (2016)
    20. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, Adv. Funct. Mater., 24, 151-157 (2014)
    21. A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. Dunbar, A. R. Buckley and D. G. Lidzey, Energy Environ. Sci., 7, 2944-2950 (2014)
    22. M. J. Carnie, C. Charbonneau, M. L. Davies, J. Troughton., T. M. Watson, K. Wojciechowski, H. Snaith and D. A. Worsley, Chem. Commun., 49, 7893-7895 (2013)
    23. J. H. Im, C. R. Lee, J. W. Lee, S. W. Park and N. G. Park, Nanoscale, 3, 4088-4093 (2012)
    24. Y. Zhao and K. Zhu, J. Phys. Chem. C, 118, 9412-9418 (2014)
    25. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 338, 643-647 (2012)
    26. J. M. Ball, M. M. Lee, A. Hey and H. J. Snaith, Energy Environ. Sci., 6, 1739-1743 (2013)
    27. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Science, 342, 341-344 (2013)
    28. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo and G. Calestani, Chem. Mater., 25, 4613-4618 (2013)
    29. P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin and A. K. Jen, Adv. Mater., 26, 3748-3754 (2014)
    30. S. T. Williams, F. Zuo, C. C. Chueh, C. Y. Liao, P. W. Liang and A. K. Jen, ACS Nano, 8, 10640-10654 (2014)
    31. F. Di Giacomo, S. Razza, F. Matteocci, A. D'Epifanio, S. Licoccia, T. M. Brown and A. Di Carlo, J. Power Sources, 251, 152-156 (2014)
    32. J. Burschka, N. Pellet, S. J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nature, 499, 316-319 (2013)
    33. Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao and J. Huang, Energy Environ. Sci., 7, 2619 (2014)
    34. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan and J. Huang, Adv. Mater., 26, 6503-6509 (2014)
    35. Q. Chen, H. Zhou, Z. Hong, S. Luo, H. S. Duan, H. H. Wang, Y. Liu, G. Li and Y. Yang, J. Am. Chem. Soc., 136, 622-625 (2014)
    36. A. Yella, L. P. Heiniger, P. Gao, M. K. Nazeeruddin and M. Gratzel, Nano Lett., 14, 2591-2596 (2014)
    37. A. Wakamiya, M. Endo, T. Sasamori, N. Tokitoh, Y. Ogomi, S. Hayase and Y. Murata, Chem. Lett., 43, 711-713 (2014)
    38. Y. Wu, A. Islam, X. Yang, C. Qin, J. Liu, K. Zhang, W. Peng and L. Han, Energy Environ. Sci., 7, 2934 (2014)
    39. C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gaob and J. Huang, J. Mater. Chem. A, 2, 18508-18514 (2014)
    40. M. Liu, M. B. Johnston and H. J. Snaith, Nature, 501, 395-398 (2013)
    41. F. Yang, M. Shtein and S. R. Forrest, J. Appl. Phys., 98, 014906 (2005)
    42. M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. G. Weale, U. Bach, Y. B. Cheng and L. Spiccia, Angew. Chem., 53, 9898-9903 (2014)
    43. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Nat. Mater., 13, 897-903 (2014)
    44. Y. Chen, Y. Zhao and Z. Liang, Chem. Mater., 2015, 27, 1448-1451.
    45. J. Yang, B. D. Siempelkamp, D. Liu, and T. L. Kelly, ACS Nano, 9, 1955-1963 (2015)
    46. J. Zhao, B. Cai, Z. Luo, Y. Dong, Y. Zhang, H. Xu, B. Hong, Y. Yang, L. Li, W. Zhang and C. Gao, Sci. Rep., 6, 1-6 (2016)
    47. D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J. R. Durrant and S. A. Haque, Energy Environ. Sci., 9, 1655-1660 (2016)
    48. Q. Wang, Q. Dong, T. Li, A. Gruverman and J. Huang, Adv. Mater., 10, 1-6 (2016)
    49. J. You, L. Meng, T. B. Song, T. F. Guo, Y. M. Yang, W. H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco and Y. Yang, Nat. Nanotechnol., 11, 75-81 (2016)
    50. Z. Zhu, Y. Bai, X. Liu, C. C. Chueh, S. Yang and A. K. Jen, Adv. Mater., 10, 1-7 (2016)
    51. Y. Deng, Q. Dong, C. Bi, Y. Yuan and J. Huang, Adv. Energy Mater., 10, 1-7 (2016)
    52. H. Back, G. Kim, J. Kim, J. Kong, T. K. Kim, H. Kang, H. Kim, J. Lee, S. Lee and K. Lee, Energy Environ. Sci., 9, 1258-1263 (2016)
    53. C. C. Chueh, C. Y. Liao, F. Zuo, S. T. Williams, P. W. Liang and A. K. Y. Jen, J. Mater. Chem. A, 3, 9058-9062 (2015)
    54. C. Zuo and L. Ding, Nanoscale, 6, 9935-9938 (2014)
    55. J. He and T. Chen, J. Mater. Chem. A, 3, 18514-18520 (2015)
    56. A. Mei1, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y. Yang, M. Grätzel, H. Han, Science, 345, 295-298 (2014)
    57. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma and S. Hayase, J. Phys. Chem. C, 118, 16651-16659 (2014)
    58. Y. Yang, C. Sun, H. L. Yip, R. Sun and X. Wang, Chem. Asian J., 11, 893-899 (2016)
    59. X. Gong, M. Li, X. B. Shi, H. Ma, Z. K. Wang and L. S. Liao, Adv. Funct. Mater., 25, 6671-6678 (2015)
    60. I. C. Smith, E. T. Hoke, D. Solis-Ibarra, M. D. McGehee and H. I. Karunadasa, Angew. Chem., 53, 11232-11235 (2014)
    61. K. M. Boopathi, R. Mohan, T. Y. Huang, W. Budiawan, M. Y. Lin, C. H. Lee, K. C. Ho and C. W. Chu, J. Mater. Chem. A, 4, 1591-1597 (2016)
    62. X. Li, M. I. Dar, C. Yi, J. Luo, M. Tschumi, S. M. Zakeeruddin, M. K. Nazeeruddin, H. Han and M. Gratzel, Nat. Chem., 7, 703-711 (2015)
    63. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 338, 643-647 (2012)
    64. M. Samsonowicz, T. Hrynaszkiewicz, R. Świsłocka, E. Regulska and W. Lewandowski, J. Mol. Struct., 744, 345-352 (2005)
    65. G. R. Fulmer, A. J. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, Organometallics, 29, 2176-2179 (2010)
    66. H. E. Gottlieb, V. Kotlyar and A. Nudelman, J. Org. Chem., 62, 7512-7515 (1997)
    67. J. Bernstein, R. E. Davis, L. Shimoni, N. L. Chang, Angew. Chem., 34, 1555–1573 (1995)
    68. C. H. Chiang, Z. L. Tseng and C. G. Wu, J. Mater. Chem. A, 2, 15897-15903 (2014)
    69. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin and M. Grätzel, Adv. Funct. Mater., 24, 3250-3258 (2014)
    70. G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely and H. J. Snaith, Adv. Funct. Mater., 24, 151-157 (2014)
    71. T. Baikie, N. S. Barrow, Y. Fang, P. J. Keenan, P. R. Slater, R. O. Piltz, M. Gutmann, S. G. Mhaisalkar and T. J. White, J. Mater. Chem. A, 3, 9298-9307 (2015)
    72. G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures, 147-155 (1994)
    73. G. P. Dado and S. H. Gellman, J. Am. Chem. Soc., 116, 1054-1062 (1994)
    74. R. D. Shannon, Acta Cryst., 32, 751-767 (1976)

    下載圖示 校內:2019-06-20公開
    校外:2019-06-20公開
    QR CODE