簡易檢索 / 詳目顯示

研究生: 陳俊智
Chen, Gin-Z
論文名稱: 兩相流入滲模式之研究
The Study of Two-Phase Flow Model for Infiltration
指導教授: 徐國錦
Hsu, Kuo-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 79
中文關鍵詞: 入滲兩相流含水量Buckley and Leverett砂箱試驗.
外文關鍵詞: Infiltration, Two-phase flow, Water content, Buckley and Leverett.
相關次數: 點閱:111下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 入滲為水文地質中一項重要之研究課題。現有的入滲模式多以單相流移動來建構理論,未將氣相移動納入考慮。本研究探討入滲過程中,液相於土壤中擠壓孔隙間氣體,形成兩相流動,氣相的移動又擠壓了潮濕鋒前土壤中原有之含水量,使得含水量下降,而後入滲水流抵達造成含水量快速上升。因此,在入滲過程中土壤含水量會有先下降再上升的現象。本研究進行兩相流入滲之理論探討跟實驗操作。在理論部份(1)忽略重力效應(2)忽略毛細效應情況下,採用Buckley and Leverett [1942] 模式計算兩相流體之運移距離與飽和度變化關係。其關係式可用於描述氣流鋒面與水流鋒面之移動,及土壤剖面之含水量變化。本研究中砂箱試驗,進行定水頭實驗,觀察試驗箱三處深度位置之含水量隨時間變化關係。設計三組實驗,每組進行至少三次重覆試驗。最後將理論模式應用於實驗結果,其結果顯示入滲水流受到氣流影響是十分顯著地,兩相流理論可用於描述入滲過程,但模式假設必須進一步移除,方能提高模式量化之精準。

    Infiltration is an important component in hydrogeological research. Most of the existing infiltration theories are constructed based on single-phase model for water movement, and those models do not account for the movement of gas phase. This study investigated the infiltration process using two-phase model. The liquid expels air in the soil void to generate the two-phase flow. The air extrudes the initial moisture content in the soil ahead of the wetting front such that the water content decreases. With the wetting front arrived, the water content rapidly increases to reach equilibrium. Therefore, the water content falls at first and rises later in the infiltration process. This study explores the application of two-phase model to the experimental data. In the theoretical part, the fluids are assumed incompressible. The travel distance of fluid migration for given saturation were calculated by Buckley and Leverett [1942] model. The results are used to describe the movement of water front and air front, and also the water content changes of the soil profile. In the sand box experiments, the ponded water head is remained constant. Variation of water content with time at three different depths are recorded. Three experiment sets were design. Each set is performed for three times. The model was applied to the experimental data. The results show that the two-phase infiltration model is applicable to describe the infiltration process. However, the quantitative assessment can be improved by relaxing the assumptions.

    ABSTRACT I 摘要 II ACKNOWLEDGE III CONTENT IV LIST OF TABLE VI LIST OF FIGURE VII NOTATION XII CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND AND MOTIVATION 1 1.2 LITERATURE REVIEW 2 1.3 FLOW CHART 5 CHAPTER 2 METHODOLOGY 7 2.1 RELATIVE PERMEABILITIES 7 2.2 GREEN-AMPT SINGLE-PHASE INFILTRATION MODEL 14 2.3 BUCKLEY AND LEVERETT TWO-PHASE INFILTRATION MODEL 16 CHAPTER 3 EXPERIMENT 25 3.1 EXPERIMENTAL EQUIPMENTS 25 3.2 EXPERIMENTAL PROCEDURE 27 3.3 EXPERIMENTAL DESIGN 30 3.4 CALIBRATION OF MOISTURE METER 34 3.5 LABORATORY RESULTS 36 CHAPTER 4 MODEL APPLICATION 45 4.1 SENSITIVITY ANALYSIS 45 4.2 INFILTRATION VELOCITY 48 4.3 INFILTRATION SIMULATION 52 4.4 COMPARISON OF EXPERIMENTAL DATA AND THEORETICAL RESULTS 56 4.5 CHARACTERISTIC DIAGRAM 63 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 74 5.1 CONCLUSIONS 74 5.2 SUGGESTIONS 75 REFERENCES 76

    References
    Archie, G. E. The electrical resistivity log as an aid in determining some reservoir characteristics, Petroleum Transactions of AIME 146: 54–62, doi:10.2118/942054-g, 1942.
    Basha, H. A., One-dimensional nonlinear steady infiltration, Water Resour. Res., 35(6), 1697-1704, 1999.
    Bennett, A. W., G. F. Hewitt, H. A. Kearsey, R. K. F. Keeys and M. P. C. Lacey, Flow Visualisation Studies of Boiling at High Pressure, Proc. Inst. Mech. Eng., 180(3C), 1965–66, 1–11. 1965.
    Biesheuvel, A. and W. C. M. Gorissen, Void Fraction Disturbances in a Uniform Bubbly Fluid, Int. J. Multiphase Flow, 16(2), 211-231, 1990.
    Brooks R. H. and A. T. Corey, Hydraulic properties of porous media, Hydrological Papers, 3, 1964.
    Buckley, S. E. and M. C. Leverett, Mechanism of Fluid Displacements in Sands, Transactions of the AIME, 146, 107–116, 1942.
    Buckingham, E., Studies on the Movement of Soil Moisture, USDA Bureau of Soils, 1907.
    Bundschuh J. and M. C. Suárez, Introduction to the numerical modeling of groundwater and geothermal systems, CRC Press, 94-98, 2010.
    Carsel, R. F., and R. S. Parrish, Developing joint probability-distributions of soil-water retention characteristics, Water Resour. Res. 24: 755-769, 1988.
    Chen, L. and M. H. Young, Green-Ampt infiltration model for sloping surfaces, Water Resour. Res., 42, W07420, doi:10.1029/2005WR004468, 2006.
    Chen, C. T. and K. C. Hsu, Use of falling-head infiltration to estimate hydraulic conductivities at various depth, Soil Science, 177(9), 543-553, 2012.
    Corey A. T. The Interrelation Between Gas and Oil Relative Permeabilities, Prod. Monthly, 19(1), 38–41, 1954.
    Dukler, A. E. and Y. Taitel, Flow Pattern Transitions in Gas-Liquid Systems: Measurement and Modelling, Multiphase Science and Technology, 1-94, 1986.
    Feunteun, S. L., O. Diat, A. Guillermo, A. Poulesquen and R. Podor, NMR 1D-imaging of water infiltration into mesoporous matrices, Magnetic Resonance Imaging 29, 443-455, 2011.
    Gardner, W. R., Some steady state solutions of unsaturated moisture flow equations with applications to evaporation from a water table, Soil Sci., 85(4), 228-232, 1958.
    Green, W. H., and G. A. Ampt, Studies on Soil physics, I, Flow of Air and Water Through Soils, J. Agric. Sci. 4:1-24, 1911.
    Hewitt, G. F., Handbook of Multiphase Systems, Hemisphere Publishing Corporation, New York, 1982.
    Hewitt, G. F., Multiphase fluid flow and pressure drop: Introduction and Fundamentals, Hemisphere Publishing Corporation, New York, Chapter 2.3.1, 1983.
    Hicks P. D., M. J. Cooker and A. J. Matthews, Saturation front evolution into a gas filled porous medium with counter-current flow, European Journal of Mechanics B/Fluids, 43, 202-215, 2014.
    Jerauld G. R. and S. J. Salter, The effect of pore-structure on hysteresis in relative permeability and capillary pressure: pore-level modeling, Transport in Porous Media 5, 103-151, 1990.
    Li, K. and R. N. Horne, Wettability determination of geothermal systems, Stanford Workshop on Geothermal Reservoir Engineering, 27, 28-30, 2002.
    Lahey, R. T. and Moody, F. J. (1977) The Thermal Hydraulics of a Boiling Water Nuclear Reactor. American Nuclear Society.
    Loaiciga, H. A., Approach to control the depth of water in basin irrigation and wetland flooding, J. Irrig. And Drain. Div., 135(5): 500-504. 2007.
    Odeh, A. S., Effect of viscosity ratio on relative permeability, Society of Petroleum Engineers, 216, 346-353, 1959.
    Ogden, F. and B. Saghafian, Green and Ampt Infiltration with Redistribution, J. Irrig. Drain Eng., 123(5), 386–393. 1997.
    Philip, J. R., An infiltration equation with physical significance, Soil Sci., 77, 153-157, 1954.
    Philip, J. R., The theory of infiltration: 4. Sorptivity and Algebraic Infiltration Equations, Soil Sci. 84(3): 257-264, 1957.
    Philip, J. R., Falling-head ponded infiltration with evaporation, J. Hydrol, 138(3/4): 591-598, 1992b.
    Purcell, W. R., Capillary pressures—Their measurement using mercury and the calculation of permeability, Trans. AIME, 186, 39, 1949.
    Richards, L. A., Capillary conduction of liquids through porous mediums, Physics, 1, 318-333, 1931.
    Salvucci, G. D., An approximate solution for steady vertical flux of moisture through an unsaturated homogeneous soil, Water Resour. Res., 29(11), 3749-3753, 1993.
    Sharfrin, E. G. and W.A. Zisman, Constitutive relations in the wetting of low energy surfaces and the theory of the retraction method of preparing monolayers, The Journal of Physical Chemistry 64 (5): 519–524, 1960.
    Streeter, L. and E. B. Wylic, Fluid Mechanics 7th, McGraw-Hill Book Company, 1979.
    Suski1, B., A. Revil, K. Titov, P. Konosavsky, M. Voltz, C. Dagès and O. Huttel, Monitoring of an infiltration experiment using the self-potential method, Water Resour. Res., 42(8), W08418, doi:10.1029/2005WR004840, 2006.
    Taitel, Y., Bornea, D. and A. E. Dukler, Modelling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes, AIChE Journal, 26(3), 345–354, 1980.
    Touma, J. and M. Vauclin, Experimental and numerical analysis of two-phase infiltration in a partially saturated soil, Transport in Porous Media, 1, 27-55, 1986.
    Robert, C., Handbook of Chemistry and Physics, Chemical Rubber Company, 1984.
    van Genuchten, M. Th., A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal, 44(5), 892–898, 1980.
    Wang, Z. and J. Feyen, Two-phase flow infiltration equations accounting for air entrapment effects, Water Resour. Res., 33(12), 2759-2767, 1997.
    Wang, Z. and J. Feyen, Air entrapment effects on infiltration rate and flow instability, Water Resour. Res., 34(2), 213-222, 1998.
    Wang, P., D. M. Tartakovsky, K. D. Jarman, JR., and A. M. Tartakovsky, CDF Solutions of Buckley-Leverett equation with uncertain parameters, Multiscale Model. Simul., 11(1), 118-133, 2013.
    Whalley, P. B., Boiling, Condensation and gas-liquid flow, Clarendon Press, Oxford Engineering Science Series 21, p316, 1987.
    Ma, Y., S. Feng, D. Su, G. Gao and Z. Huo, Modeling water infiltration in a large layered soil column with a modified Green–Ampt model and HYDRUS-1D, Computers and Electronics in Agriculture, 71, 40–47, 2010.
    Zhu, J., and B. P. Mohanty, Analytical solutions for steady state vertical infiltration, Water Resour. Res., 38(8), 10.1029/2001WR000398, 2002.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE