| 研究生: |
廖偉茵 Liao, Wei-yin |
|---|---|
| 論文名稱: |
生理陽離子、三酸甘油酯與lipoprotein-associated phospholipase A2生化感測器的研究 Studies of physiological cations, triglycerides and lipoprotein-associated phospholipase A2 biosensors |
| 指導教授: |
劉炯權
Liu, Chung-Chiun 周澤川 Chou, Tse-Chuan |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 離子感測器 、生化感測器 、三酸甘油酯 、脂蛋白相關磷脂酶A2 |
| 外文關鍵詞: | Lipoprotein-associated phospholipase A2, biosensors, Triglycerides, Ion sensors |
| 相關次數: | 點閱:74 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之內容著重於兩種生化感測器的開發,分別為電位式離子感測器與電流式三酸甘油酯與脂蛋白相關磷脂酶A2感測器。這兩種感測器皆以微製造技術製備,以便達成隨時監控人體的狀況的目地,就像市售的血糖儀,人們可以隨時隨地量測自己的血糖一樣。這種儀器的發明使得人類能花費更少的時間就能得知身體狀況,因此開發適用於此種儀器的感測器亦發重要。相同的,能直接偵測心臟疾病的目標分子:三酸甘油酯與脂蛋白相關磷脂酶A2的生化感測器的開發更能替人類有效的預防疾病的發生。因此,本研究最主要的動機即為發展偵測生理陽離子,三酸甘油酯與脂蛋白相關磷脂酶A2生化感測器的晶片。
電位式離子感測器在本研究中有兩種不同的形式的晶片,分別為陣列式與微流體形式的晶片。
離子陣列式晶片,它是以一種可以量測生物樣品中酸鹼值、鉀、鈉、銨和鈣離子濃度的晶片。再開發這種晶片最重要的是發展穩定性佳的參考電極。因此,本研究闡述以網印電極方式來製造平版式的參考電極晶片,來取代傳統參考電極。此晶片式參考電極使用含有氯化鈉的洋菜膠為內電解質以及二氯稀橡膠作為液體接界和絕緣膠。結果顯示,此晶片式參考電極並不受多種生理上重要的離子的濃度影響。將此晶片式參考電極與酸鹼感測器與不同的離子電極結合便可形成一量測酸鹼值的晶片與陣列式離子感測晶片。結果顯示,酸鹼值檢測晶片與陣列式離子感測晶片的靈敏度與酸鹼感測器和離子電極相對於傳統參考電極所得的靈敏度相差不大。由此得知,晶片式參考電極的性能與傳統參考電極相當。
微流體式的晶片亦包含酸鹼值、鉀和鈣離子感測電極。此三種感測器分別為以氧化銥、鉀和鈣離子選擇膜修飾白金電極而成。此晶片包含運輸檢體的動力即微幫浦使檢體能在微流道中通興並流經感測器。結果顯示,這種電位式感測器在此微流頭體晶片中亦能有能斯特反應的能力,靈敏度趨近於理想值。
心臟病在整個人類族群中成為致命的疾病。近年來不僅三酸甘油酯而且脂蛋白相關磷脂酶A2同樣為心血管疾病重要的指標。因此,本研究開發可丟棄式以銥修飾的碳電極來感測血清中的三酸甘油酯與脂蛋白相關磷脂酶A2。感測的機制建立於量測酵素反應的產物:過氧化氫與尼克酰胺腺嘌呤二核苷酸。結果顯示,丁酸甲酯可作為量測脂蛋白相關磷脂酶A2的基直,在0到150個單位的脂蛋白相關磷脂酶A2其靈敏度為1.45 nAU-1。甘油三丁酸酯的量測中得到在0到10豪莫爾濃度其其靈敏度為7.5 nA(mM)-1。同時亦用尿酸及維生素C來評估此感測器,結果顯示影響甚微。最後本研究亦找出最佳的偵測條件於使可丟棄式生化感測器。
This dissertation is focused on two important types of biosensors, (1) potentiometric ion sensors and (2) amperometric biosensors for determining triglycerides (TG) and lipoprotein-associated phospholipase A2 (Lp-PLA2). Both of these kinds of sensors were fabricated by microfabrication technology to achieve the final goal of being useable tools for real-time monitoring of body chemistry. For example, the glucose meter was created for people to detect glucose levels in blood at anytime and anywhere. This kind of instrument ensures that people can spend less time to be concerned about their health than they used to be. There is no doubt that the sensors used in the glucose meter can provide a convenient way to assist people in measuring blood glucose. Hence, the development of the biosensors, which can detect the biomarkers of disease will help people predict the possibility of disease happing. For this reason, developing a chip having multiple sensors for the evaluation of significant physiological cations and biomarkers of diseases (Lp-PLA2 and TG) is the motivation of this research.
The potentiometric ion sensors in this study were created in two different forms i.e. as sensor array chips and microfluidic devices.
An ion sensor array chip is a chip which can measure the pH, K+, Na+, NH4+ and Ca2+ ion concentrations of biological samples. In creating this array, it is necessary to develop a chip type reference electrode to improve the practicability and preciseness. Here, the fabrication of a planar-form, chip type reference electrode using a screen-printing method was developed to replace a commercial reference electrode. The reference electrode chip uses agar gel as the inner electrolyte and chloroprene rubber for the liquid junction and insulator. It was shown that the reference electrode chip is insensitive to most of the physiologically important ionic species. Integration of the reference electrode chip with four different ion selective electrodes (potassium, sodium, ammonium and calcium) and a pH indicator, on a substrate, to form an ion sensor array chip was performed. There was no significant difference between the sensitivity obtained from ion selective electrodes employing our reference electrode chip and from ion selective electrodes formed with a commercial reference electrode. These results indicate that our fabricated reference electrode was at least equal to commercial reference electrodes, in terms of sensitivity, while being compatible with potentiometric ion sensors fabricated on the same substrate as in an ion sensor array.
A microfluidic device with an all-solid-state potentiometric biosensor array was developed by using microfabrication technology. The sensor array included a pH indicator, potassium and calcium ion-selective microelectrodes. The detection system was integrated with a micro-pneumatic pump which can continuously drive fluids into the microchannel through sensors. The sensor array microfluidic device showed near Nerstian responses.
Heart disease has become a major heath concern for entire population. Recently, not only TG but Lp-PLA2 was also an important marker of cardiovascular disease. In this study, detection and quantification of Lp-PLA2 and TG using an iridium modified carbon based biosensor were successfully carried out. The detection procedure was based on measuring the enzymatically produced hydrogen peroxide and NADH from the reactions of methyl ester hydrolysis by Lp-PLA2 and glycerol oxidation by glycerol dehydrogenase. From the results, methyl butyrate can be as the substrate for Lp-PLA2 assay. The detection of Lp-PLA2, in the concentration range 0 to 150 Uml-1, was established as following a linear relationship with a sensitivity of 1.45 nAU-1 in bovine serum. A linear response to glyceryl tributyrate in the concentration range of 0 to 10 mM and a sensitivity of 7.5 nA(mM)-1 in bovine serum. The potential interference of species such as uric acid (UA) and ascorbic acid (AA) was assessed. The incorporation of a selected surfactant and an increase in the incubation temperature appeared to enhance the performance of this biosensor. The conditions for the determination of Lp-PLA2 and TG levels in bovine serum using this biosensor were optimized.
References
[1] A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, John Wiley, New York, 2001.
[2] D.J.G. Ives, G.J. Janz, Reference electrodes, theory and practice, Academic Press, New York,, 1961.
[3] D. Ammann, Ion-selective microelectrodes: Principles, Design and Application, Springer-Verlag, Berlin, New York 1986.
[4] L.A. Kaplan, A.J. Pesce, S.C. Kazmierczak, Clinical chemistry: theory, analysis, correlation, Mosby, St. Louis, 2003.
[5] T.H. Gieling, G. van Straten, H.J.J. Janssen, H. Wouters, ISE and chemfet sensors in greenhouse cultivation, Sens. Actuators B-Chem., 105 (2005) 74-80.
[6] S. Martinoia, G. Massobrio, L. Lorenzellib, Modeling ISFET microsensor and ISFET-based microsystems: a review, Sens. Actuators B-Chem., 105 (2005) 14-27.
[7] C.H. Hamann, W. Vielstich, A. Hamnett, Electrochemistry, Wiley-VCH, Weinheim, 2007.
[8] J.S. Newman, K.E. Thomas-Alyea, Electrochemical systems, Wiley-Interscience, Hoboken, N.J., 2004.
[9] D. Diamond, E. McEnroe, M. McCarrick, A. Lewenstam, Evaluation of a new solid-state reference electrode junction material for ion-selective electrodes, Electroanalysis, 6 (1994) 962-971.
[10] L. Tymecki, Z. Zwierkowska, R. Koncki, Screen-printed reference electrodes for potentiometric measurements, Anal. Chim. Acta, 526 (2004) 3-11.
[11] A.W.J. Cranny, J.K. Atkinson, Thick film silver silver chloride reference electrodes, Meas. Sci. Technol., 9 (1998) 1557-1565.
[12] P.J. Kinlen, J.E. Heider, D.E. Hubbard, A Solid-State Ph Sensor-Based on a Nafion-Coated Iridium Oxide Indicator Electrode and a Polymer-Based Silver-Chloride Reference Electrode, Sens. Actuators B-Chem., 22 (1994) 13-25.
[13] M.A. Nolan, S.H. Tan, S.P. Kounaves, Fabrication and characterization of a solid state reference electrode for electroanalysis of natural waters with ultramicroelectrodes, Anal. Chem., 69 (1997) 1244-1247.
[14] H.R. Kim, Y.D. Kim, K.I. Kim, J.H. Shim, H. Nam, B.K. Kang, Enhancement of physical and chemical properties of thin film Ag/AgCl reference electrode using a Ni buffer layer, Sens. Actuators B-Chem., 97 (2004) 348-354.
[15] K. Eine, S. Kjelstrup, K. Nagy, K. Syverud, Towards a solid state reference electrode, Sens. Actuators B-Chem., 44 (1997) 381-388.
[16] K. Nagy, K. Eine, K. Syverud, O. Aune, Promising new solid-state reference electrode, J. Electrochem. Soc., 144 (1997) L1-L2.
[17] H.J. Lee, U.S. Hong, D.K. Lee, J.H. Shin, H. Nam, G.S. Cha, Solvent-processible polymer membrane-based liquid junction-free reference electrode, Anal. Chem., 70 (1998) 3377-3383.
[18] H.J. Yoon, J.H. Shin, S.D. Lee, H. Nam, G.S. Cha, T.D. Strong, R.B. Brown, Solid-state ion sensors with a liquid junction-free polymer membrane-based reference electrode for blood analysis, Sens. Actuators B-Chem., 64 (2000) 8-14.
[19] E. Bakker, Hydrophobic membranes as liquid junction-free reference electrodes, Electroanalysis, 11 (1999) 788-792.
[20] Y.M. Mi, S. Mathison, E. Bakker, Polyion sensors as liquid junction-free reference electrodes, Electrochem. Solid State, 2 (1999) 198-200.
[21] H. Suzuki, T. Hirakawa, S. Sasaki, I. Karube, Micromachined liquid-junction Ag/AgCl reference electrode, Sens. Actuators B-Chem., 46 (1998) 146-154.
[22] H. Suzuki, A. Hiratsuka, S. Sasaki, I. Karube, Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability, Sens. Actuators B-Chem., 46 (1998) 104-113.
[23] H. Suzuki, T. Hirakawa, S. Sasaki, I. Karube, An integrated three-electrode system with a micromachined liquid-junction Ag/AgCl reference electrode, Anal. Chim. Acta, 387 (1999) 103-112.
[24] H. Suzuki, T. Taura, Thin-film Ag/AgCl structure and operational modes to realize long-term storage, J. Electrochem. Soc., 148 (2001) E468-E474.
[25] T. Matsuo, H. Nakajima, Characteristics of reference electrodes using a polymer gate ISFET, Sens. Actuators, 5 (1984) 293-305.
[26] H. Nakajima, M. Esashi, T. Matsuo, The cation concentration response of polymer gate ISFET, J. Electrochem. Soc., 129 (1982) 141-143.
[27] M. Fujihira, M. Fukui, T. Osa, Chemically modified pararylene gate field-effect transistor-preparation of pH insensitive parylene gate for chemical modofication, J. Electroanal. Chem., 106 (1980) 413-418.
[28] H. Perrot, N. Jaffrezicrenault, N.F. Derooij, H.H. Vandenvlekkert, Ionic detection using differential measurement between an ion-selective FET and a reference FET, Sens. Actuators, 20 (1989) 293-299.
[29] J.M. Chovelon, J.J. Fombon, P. Clechet, N. Jaffrezicrenault, C. Martelet, A. Nyamsi, Y. Cros, Sensitization of dielectric surfaces by chemical grafting-application to pH ISFETS and REFETS, Sens. Actuators B-Chem., 8 (1992) 221-225.
[30] A. Simonis, H. Luth, J. Wang, M.J. Schoning, New concepts of miniaturised reference electrodes in silicon technology for potentiometric sensor systems, Sens. Actuators B-Chem., 103 (2004) 429-435.
[31] N. Oyama, T. Ohsaka, S. Ikeda, K. Okuaki, A solid-state reference electrode based on bilayer coating with poly(p,p'-biphenaol) and polyimide films for the gate of field-effect transistor, Anal. Sci., 5 (1989) 729-734.
[32] W. Potter, C. Dumschat, K. Cammann, Miniaturized reference electrode based on a perchlorate-selective field-effect transistor, Anal. Chem., 67 (1995) 4586-4588.
[33] W.Y. Liao, T.C. Chou, Fabrication of a planar-form screen-printed solid electrolyte modified Ag/AgCl reference electrode for application in a potentiometric biosensor, Anal. Chem., 78 (2006) 4219-4223.
[34] S. Glab, A. Hulanicki, G. Edwall, F. Ingman, Metal-metal oxide and metal-oxide electrodes as pH sensors, Crit. Rev. Anal. Chem., 21 (1989) 29-47.
[35] G. Edwall, Improved Antimony-Antimony(Iii) Oxide Ph Electrodes, Med. Biol. Eng. Comput., 16 (1978) 661-669.
[36] R.E.F. Einerhand, W.H.M. Visscher, E. Barendrecht, pH measurement in strong KOH solutions with a bismuth electrode, Electrochim. Acta, 34 (1989) 345-353.
[37] C.C. Liu, B.C. Bocchicchio, P.A. Overmyer, M.R. Neuman, Palladium-palladium oxide miniature pH electrode, Science, 207 (1980) 188-189.
[38] W.T. Grubb, L.H. King, Palladium-palladium oxide pH electrodes, Anal. Chem., 52 (1980) 270-273.
[39] A. Fog, R.P. Buck, Electronic semiconducting oxide as pH sensors, Sens. Actuator, 5 (1984) 137-146.
[40] K. Pasztor, A. Sekiguchi, N. Shimo, N. Kitamura, H. Masuhara, Electrochemically-deposited RuO2 films as pH sensors, Sens. Actuators B-Chem., 14 (1993) 561-562.
[41] H.N. McMurray, P. Douglas, D. Abbot, NOVEL Thick-film pH sensors based on ruthenium dioxide glass composites, Sens. Actuators B-Chem., 28 (1995) 9-15.
[42] S. Yao, M. Wang, M. Madou, A pH electrode based on melt-oxidized iridium oxide, J. Electrochem. Soc., 148 (2001) H29-H36.
[43] S.A.M. Marzouk, S. Ufer, R.P. Buck, T.A. Johnson, L.A. Dunlap, W.E. Cascio, Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia, Anal. Chem., 70 (1998) 5054-5061.
[44] G. Papeschi, S. Bordi, C. Beni, L. Ventura, Use of an iridium electrode for direct measurement of PI of proteins after ioselectric-focusing in polyacrylasmide-gel, Biochimica Et Biophysica Acta, 453 (1976) 192-199.
[45] P.J. Kinlen, J.E. Heider, D.E. Hubbard, A Solid-state pH sensors-based on a nafion-coated iridium oxide indicator electrode and a polymer-based silver-chloride reference electrode, Sens. Actuators B-Chem., 22 (1994) 13-25.
[46] I. Song, K. Fink, J.H. Payer, Metal oxide metal pH sensor: Effect of anions on pH measurements, Corrosion, 54 (1998) 13-19.
[47] J.E. Baur, T.W. Spaine, Electrochemical deposition of iridium(IV) oxide from alkaline solutions of iridium(III) oxide, J. Electroanal. Chem., 443 (1998) 208-216.
[48] A.J. Bard, M. Stratmann, Encyclopedia of electrochemistry, Wiley-VCH, Weinheim ; Cambridge, 2002.
[49] E. Bakker, P. Buhlmann, E. Pretsch, Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics, Chem. Rev., 97 (1997) 3083-3132.
[50] P. Buhlmann, E. Pretsch, E. Bakker, Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors, Chem. Rev., 98 (1998) 1593-1687.
[51] S.H. Wang, T.C. Chou, C.C. Liu, Development of a solid-state thick film calcium ion-selective electrode, Sens. Actuators B-Chem., 96 (2003) 709-716.
[52] S.H. Wang, T.C. Chou, Immobilized ionophore calcium ion sensor modified by montmorillonite, Electroanalysis, 12 (2000) 468-470.
[53] C.S. Zhang, D. Xing, Y.Y. Li, Micropumps, microvalves, and micromixers within PCR microfluidic chips: Advances and trends, Biotechnol. Adv., 25 (2007) 483-514.
[54] S.J. Lee, S.Y. Lee, Micro total analysis system (mu-TAS) in biotechnology, Appl. Microbiol. Biotechnol., 64 (2004) 289-299.
[55] A. Nisar, N. AftuIpurkar, B. Mahaisavariya, A. Tuantranont, MEMS-based micropumps in drug delivery and biomedical applications, Sens. Actuators B-Chem., 130 (2008) 917-942.
[56] H.T.G. Vanlintel, F.C.M. Vandepol, S. Bouwstra, A piezoelectric micropump based on micromachining of silicon, Sens. Actuators B-Chem., 15 (1988) 153-167.
[57] J.G. Smits, Piezoelectric micropump with 3 valves working peristaltically, Sens. Actuator A-Phys., 21 (1990) 203-206.
[58] D.J. Laser, J.G. Santiago, A review of micropumps, J. Micromech. Microeng., 14 (2004) R35-R64.
[59] P. Woias, Micropumps - past, progress and future prospects, Sens. Actuators B-Chem., 105 (2005) 28-38.
[60] R. Zengerle, J. Ulrich, S. Kluge, M. Richter, A. Richter, A bidirectional silicon micropump, Sens. Actuator A-Phys., 50 (1995) 81-86.
[61] T. Bourouina, A. Bosseboeuf, J.P. Grandchamp, Design and simulation of an electrostatic micropump for drug-delivery applications, J. Micromech. Microeng., 7 (1997) 186-188.
[62] M.M. Teymoori, E. Abbaspour-Sani, Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications, Sens. Actuator A-Phys., 117 (2005) 222-229.
[63] A. Machauf, Y. Nemirovsky, U. Dinnar, A membrane micropump electrostatically actuated across the working fluid, J. Micromech. Microeng., 15 (2005) 2309-2316.
[64] S. Bohm, W. Olthuis, P. Bergveld, A plastic micropump constructed with conventional techniques and materials, Sens. Actuator A-Phys., 77 (1999) 223-228.
[65] C. Yamahata, C. Lotto, E. Al-Assaf, M.A.M. Gijs, A PMMA valveless micropump using electromagnetic actuation, Microfluid. Nanofluid., 1 (2005) 197-207.
[66] C. Yamahata, M. Chastellain, V.K. Parashar, A. Petri, H. Hofmann, M.A.M. Gijs, Plastic micropump with ferrofluidic actuation, J. Microelectromech. Syst., 14 (2005) 96-102.
[67] F.C.M. Vandepol, H.T.G. Vanlintel, M. Elwenspoek, J.H.J. Fluitman, A thermopneumatic micropump based on micro-engineering techniques, Sens. Actuator A-Phys., 21 (1990) 198-202.
[68] O.C. Jeong, S.W. Park, S.S. Yang, J.J. Pak, Fabrication of a peristaltic PDMS micropump, Sens. Actuator A-Phys., 123-24 (2005) 453-458.
[69] O.C. Jeong, S.S. Yang, Fabrication and test of a thermopneumatic micropump with a corrugated p plus diaphragm, Sens. Actuator A-Phys., 83 (2000) 249-255.
[70] J.H. Kim, K.H. Na, C.J. Kang, Y.S. Kim, A disposable thermopneumatic-actuated micropump stacked with PDMS layers and ITO-coated glass, Sens. Actuator A-Phys., 120 (2005) 365-369.
[71] C.Y. Lee, G.B. Lee, J.L. Lin, F.C. Huang, C.S. Liao, Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification, J. Micromech. Microeng., 15 (2005) 1215-1223.
[72] J.F. Chen, M. Wabuyele, H.W. Chen, D. Patterson, M. Hupert, H. Shadpour, D. Nikitopoulos, S.A. Soper, Electrokinetically synchronized polymerase chain reaction microchip fabricated in polycarbonate, Anal. Chem., 77 (2005) 658-666.
[73] G.Q. Hu, Q. Xiang, R. Fu, B. Xu, R. Venditti, D.Q. Li, Electrokinetically controlled real-time polymerase chain reaction in microchannel using Joule heating effect, Anal. Chim. Acta, 557 (2006) 146-151.
[74] E.T. Lagally, P.C. Simpson, R.A. Mathies, Monolithic integrated microfluidic DNA amplification and capillary electrophoresis analysis system, Sens. Actuators B-Chem., 63 (2000) 138-146.
[75] P.K. Yuen, L.J. Kricka, P. Wilding, Semi-disposable microvalves for use with microfabricated devices or microchips, J. Micromech. Microeng., 10 (2000) 401-409.
[76] Anderson RC, Su X, Bogdan GJ, Fenton J. A miniature integrated device for automated multistep genetic assays. Nucleic Acids Res., 28 (2000) e60.
[77] W.H. Grover, A.M. Skelley, C.N. Liu, E.T. Lagally, R.A. Mathies, Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices, Sens. Actuators B-Chem., 89 (2003) 315-323.
[78] E.T. Lagally, C.A. Emrich, R.A. Mathies, Fully integrated PCR-capillary electrophoresis microsystem for DNA analysis, Lab Chip, 1 (2001) 102-107.
[79] E.T. Lagally, J.R. Scherer, R.G. Blazej, N.M. Toriello, B.A. Diep, M. Ramchandani, G.F. Sensabaugh, L.W. Riley, R.A. Mathies, Integrated portable genetic analysis microsystem for pathogen/infectious disease detection, Anal. Chem., 76 (2004) 3162-3170.
[80] N.M. Toriello, C.N. Liu, R.A. Mathies, Multichannel reverse transcription-polymerase chain reaction microdevice for rapid gene expression and biomarker analysis, Anal. Chem., 78 (2006) 7997-8003.
[81] C.N. Liu, N.M. Toriello, R.A. Mathies, Multichannel PCR-CE microdevice for genetic analysis, Anal. Chem., 78 (2006) 5474-5479.
[82] P. Liu, T.S. Seo, N. Beyor, K.J. Shin, J.R. Scherer, R.A. Mathies, Integrated portable polymerase chain reaction-capillary electrophoresis microsystem for rapid forensic short tandem repeat typing, Anal. Chem., 79 (2007) 1881-1889.
[83] C.S. Liao, G.B. Lee, H.S. Liu, T.M. Hsieh, C.H. Luo, Miniature RT-PCR system for diagnosis of RNA-based viruses, Nucleic Acids Res., 33 (2005).
[84] K.Y. Lien, W.C. Lee, H.Y. Lei, G.B. Lee, Integrated reverse transcription polymerase chain reaction systems for virus detection, Biosens. Bioelectron., 22 (2007) 1739-1748.
[85] F.C. Huang, C.S. Liao, G.B. Lee, An integrated microfluidic chip for DNA/RNA amplification, electrophoresis separation and on-line optical detection, Electrophoresis, 27 (2006) 3297-3305.
[86] M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography, Science, 288 (2000) 113-116.
[87] J. Liu, M. Enzelberger, S. Quake, A nanoliter rotary device for polymerase chain reaction, Electrophoresis, 23 (2002) 1531-1536.
[88] J. Liu, C. Hansen, S.R. Quake, Solving the "world-to-chip" interface problem with a microfluidic matrix, Anal. Chem., 75 (2003) 4718-4723.
[89] C.J. Packard, D.J. Rader, Lipids and atherosclerosis, Taylor & Francis, London, 2006.
[90] A.J. Lusis, Atherosclerosis, Nature, 407 (2000) 233-241.
[91] A.C. Newby, An overview of the vascular response to injury: a tribute to the late Russell Ross, Toxicol. Lett., 112 (2000) 519-529.
[92] R.O. Cannon, 3rd, Role of nitric oxide in cardiovascular disease: focus on the endothelium, Clin. Chem., 44 (1998) 1809-1819.
[93] S. Dimmeler, I. Fleming, B. Fisslthaler, C. Hermann, R. Busse, A.M. Zeiher, Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation, Nature, 399 (1999) 601-605.
[94] P. Libby, Vascullar biology of atherosclerolsis: Overview and state of the art, Am. J. Cardiol., 91 (2003) 3A-6A.
[95] N.A. Flavahan, Atherosclerosis or lipoprotein-induced endothelial dysfunction – potential mechanisms underlying reduction in edrf/nitric oxide activity, Circulation, 85 (1992) 1927-1938.
[96] A.D. Callow, Endothelial dysfunction in atherosclerosis, Vascul Pharmacol, 38 (2002) 257-258.
[97] R. Ross, Rous-Whipple Award Lecture. Atherosclerosis: a defense mechanism gone awry, Am. J. Pathol., 143 (1993) 987-1002.
[98] R. Ross, Atherosclerosis is an inflammatory disease, Am. Heart J., 138 (1999) S419-420.
[99] C. Monaco, E. Andreakos, S. Kiriakidis, M. Feldmann, E. Paleolog, T-cell-mediated signalling in immune, inflammatory and angiogenic processes: the cascade of events leading to inflammatory diseases, Curr. Drug Targets Inflamm. Allergy, 3 (2004) 35-42.
[100] R.M. Faruqi, P.E. Dicorleto, Mechanisms of monocyte recruitment and accumulation, British Heart Journal, 69 (1993) S19-S29.
[101] C.L. Klein, H. Kohler, F. Bittinger, M. Wagner, I. Hermanns, K. Grant, J.C. Lewis, C.J. Kirkpatrick, Comparative studies on vascular endothelium in vitro. I. Cytokine effects on the expression of adhesion molecules by human umbilical vein, saphenous vein and femoral artery endothelial cells, Pathobiology, 62 (1994) 199-208.
[102] R.J. Faull, Adhesion molecules in health and disease, Australian and New Zealand Journal of Medicine, 25 (1995) 720-730.
[103] P. Libby, P.M. Ridker, A. Maseri, Inflammation and atherosclerosis, Circulation, 105 (2002) 1135-1143.
[104] R.T. Dean, D.T. Kelly, Atherosclerosis : gene expression, cell interactions, and oxidation, Oxford University Press, Oxford, 2000.
[105] R. Ross, Atherosclerosis--an inflammatory disease, N. Engl. J. Med., 340 (1999) 115-126.
[106] R.R. Packard, P. Libby, Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction, Clin. Chem., 54 (2008) 24-38.
[107] A. Zalewski, C. Macphee, Role of lipoprotein-associated phospholipase A(2) in atherosclerosis - Biology, epidemiology, and possible therapeutic target, Arterioscler. Thromb. Vasc. Biol., 25 (2005) 923-931.
[108] A.D. Tselepis, M. John Chapman, Inflammation, bioactive lipids and atherosclerosis: potential roles of a lipoprotein-associated phospholipase A2, platelet activating factor-acetylhydrolase, Atheroscler. Suppl., 3 (2002) 57-68.
[109] J.H. Min, M.K. Jain, C. Wilder, L. Paul, R. Apitz-Castro, D.C. Aspleaf, M.H. Gelb, Membrane-bound plasma platelet activating factor acetylhydrolase acts on substrate in the aqueous phase, Biochemistry, 38 (1999) 12935-12942.
[110] O.G. Berg, M.H. Gelb, M.D. Tsai, M.K. Jain, Interfacial enzymology: the secreted phospholipase A(2)-paradigm, Chem. Rev., 101 (2001) 2613-2654.
[111] R.A. Deems, Interfacial enzyme kinetics at the phospholipid/water interface: practical considerations, Anal. Biochem., 287 (2000) 1-16.
[112] V. Fuster, R. Ross, E.J. Topol, Atherosclerosis and coronary artery disease, Lippincott-Raven, Philadelphia, 1996.
[113] A.L. Lehninger, D.L. Nelson, M.M. Cox, Lehninger principles of biochemistry, W.H. Freeman, New York, 2005.
[114] J. Moiroux, P.J. Elving, Effects of adsorption, electrode material, and operational variables on oxidation of dihydronicotinamide asenine-dinucleotinamide at carbon electrodes, Anal. Chem., 50 (1978) 1056-1062.
[115] H. Jaegfeldt, Adsorption and electrochemical oxidation behavior of NADH at a clean platinum-electrode, J. Electroanal. Chem., 110 (1980) 295-302.
[116] S.A. Wring, J.P. Hart, Chemically modified carbon-based electrodes and their application as electrochemical sensors for the analysis of biologically important compounds – a review, Analyst, 117 (1992) 1215-1229.
[117] M. Hedenmo, A. Narvaez, E. Dominguez, I. Katakis, Reagentless amperometric glucose dehydrogenase biosensor based on electrocatalytic oxidation of NADH by osmium phenanthrolinedione mediator, Analyst, 121 (1996) 1891-1895.
[118] B.W. Carlson, L.L. Miller, Mechanism of the oxidation of NADH by quinones – energetic of one-electron and hydride routes, J. Am. Chem. Soc., 107 (1985) 479-485.
[119] A. Kitani, Y.H. So, L.L. Miller, An electrochemical study of the kinetics of NADH being oxidized by diimine derived form diaminobenzenes and diaminopyrimimids, J. Am. Chem. Soc., 103 (1981) 7636-7641.
[120] K. Essaadi, B. Keita, L. Nadjo, R. Contant, Oxidation of NADH by oxometalates, Journal of Electroanal. Chem., 367 (1994) 275-278.
[121] F.Q. Xu, H.W. Li, S.J. Cross, T.F. Guarr, Electrocatalytic oxidation of NADH at poly(metallopthalocyanine)-modified electrode, Journal of Electroanal. Chem., 368 (1994) 221-225.
[122] M. Ishiyama, K. Sasamoto, M. Shiga, Y. Ohkura, K. Ueno, K. Nishiyama, I. Taniguchi, Novel disulfonated tetrazolium salt that can be reduced to a water-soluble formazan and its application to the assay of lactate-deydrogenase, Analyst, 120 (1995) 113-116.
[123] C.E. Banks, R.G. Compton, Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study, Analyst, 130 (2005) 1232-1239.
[124] J. Wang, G. Rivas, M. Chicharro, Glucose microsensor based on electrochemical deposition of iridium and glucose oxidase onto carbon fiber electrodes, Journal of Electroanal. Chem., 439 (1997) 55-61.
[125] M.C. Rodriguez, G.A. Rivas, Glucose biosensor prepared by the deposition of iridium and glucose oxidase on glassy carbon transducer, Electroanalysis, 11 (1999) 558-564.
[126] J. Shen, L. Dudik, C.C. Liu, An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor, Sens. Actuators B-Chem., 125 (2007) 106-113.
[127] Y.C. Luo, J.S. Do, C.C. Liu, An amperometric uric acid biosensor based on modified Ir-C electrode, Biosens. Bioelectron., 22 (2006) 482-488.