簡易檢索 / 詳目顯示

研究生: 白育嘉
Pai, Yu-Chia
論文名稱: 先進鍺/矽通道鰭式場效電晶體之低溫元件模型效能及可靠度特性分析
Compact Modeling with Power Performance Analysis & Reliability Characterization of Advanced Cryogenic Ge/Si-Channel FinFETs
指導教授: 盧達生
Lu, Darsen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 89
中文關鍵詞: 簡易模型BSIM-CMG低溫FinFETGeOI次臨界擺幅遷移率頻率功耗可靠度NBTI
外文關鍵詞: Compact Modeling, BSIM-CMG, Cryogenic, FinFET, GeOI, Subthreshold Swing, Mobility, Frequency, Power Consumption, Reliability, NBTI
ORCID: 0009-0002-7801-3656
相關次數: 點閱:67下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 i Abstract ii Acknowledgement iii Content iv List of Figure vi List of Table viii Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Research Objectives 3 Chapter 2 Literature Review 4 2.1 Cryogenic Phenomena 4 2.1.1 Carrier Freeze-Out 4 2.1.2 Subthreshold Swing Saturation 6 2.1.3 Threshold Voltage Increasing 12 2.1.4 Mobility Enhancement 15 Chapter 3 Methodology 17 3.1 Cryogenic Measurement 17 3.1.1 Measurement Environment 17 3.1.2 Device Description 18 3.1.3 Die Measurement 20 3.2 Compact Modeling 21 3.2.1 Fitting Environment 21 3.2.2 Fitting Steps 22 3.3 Materials Consideration 37 3.3.1 Channel Material Choice 37 Chapter 4 Result and Discussion 38 4.1 Cryogenic SPICE Model 38 4.1.1 TSMC Si-FinFET 38 4.1.2 TSRI GeOI FinFET 48 4.2 Circuit Performance 56 4.2.1 Inverter 56 4.2.2 6T SRAM 58 4.2.3 Ring Oscillator 60 4.3 Cryogenic Reliability 64 4.3.1 Reliability Concern 64 4.3.2 NBTI Measurement Design 65 4.3.3 Cryogenic NBTI Results 65 Chapter 5 Conclusions and Future Work 67 5.1 Conclusions 67 5.2 Future Work 68 Answer to Thesis Defense Questions 70 Reference 75

    [1] Schaller, Robert R. "Moore's law: past, present and future." IEEE spectrum 34.6 (1997): 52-59.
    [2] Dennard, Robert H., et al. "Design of ion-implanted MOSFET's with very small physical dimensions." IEEE Journal of Solid-State Circuits 9.5 (1974): 256-268.
    [3] K. Rupp, M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten, and C. Moore. "40 Years of Microprocessor Trend Data." [Online]. Available: https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/.
    [4] ITRS 2.0 Publication: 5_2015 ITRS 2.0_More Moore.pdf, p. 14. [Online]. Available: http://www.itrs2.net/.
    [5] Hu, Chenming. "Finfet and other new transistor technologies." Univ. of California (2011).
    [6] Cao, Wei, and Kaustav Banerjee. "Is negative capacitance FET a steep-slope logic switch?." Nature communications 11.1 (2020): 1-8.
    [7] Radisavljevic, Branimir, et al. "Single-layer MoS 2 transistors." Nature nanotechnology 6.3 (2011): 147-150.
    [8] Jason Woo. Develop a low-temperature (77K) device technology to achieve a 25X improvement in performance/power compared to state-of-the-art (SOA) room temperature CPUs. DARPA, 2021.
    [9] Brian Bailey. “Cryogenic CMOS Becomes Cool." [Online]. Available: https://semiengineering.com/cryogenic-cmos-becomes-cool/.
    [10] E. Garzón, A. Teman, and M. Lanuzza, "Embedded memories for cryogenic applications," Electronics, vol. 11, no. 1, p. 61, 2021.
    [11] A. Beckers, F. Jazaeri and C. Enz, "Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K," in IEEE Journal of the Electron Devices Society, vol. 6, pp. 1007-1018, 2018, doi: 10.1109/JEDS.2018.2817458.
    [12] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Hoboken, NJ, USA: Wiley, 2006.
    [13] M. Rudan, "Physics of Semiconductor Devices," Springer New York, 2015.
    [14] A. Beckers, F. Jazaeri and C. Enz, "Cryogenic MOS Transistor Model," in IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3617-3625, Sept. 2018, doi: 10.1109/TED.2018.2854701.
    [15] A. Beckers, F. Jazaeri and C. Enz, "Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors," in IEEE Electron Device Letters, vol. 41, no. 2, pp. 276-279, Feb. 2020, doi: 10.1109/LED.2019.2963379.
    [16] H. Bohuslavskyi et al., "Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening," in IEEE Electron Device Letters, vol. 40, no. 5, pp. 784-787, May 2019, doi: 10.1109/LED.2019.2903111.
    [17] K. -H. Kao et al., "Subthreshold Swing Saturation of Nanoscale MOSFETs Due to Source-to-Drain Tunneling at Cryogenic Temperatures," in IEEE Electron Device Letters, vol. 41, no. 9, pp. 1296-1299, Sept. 2020, doi: 10.1109/LED.2020.3012033.
    [18] Y. Tsividis and C. “McAndrew, Operation and Modeling of the MOS Transistor,” London, U.K.: Oxford Univ. Press, 2011.
    [19] F. Jazaeri, C. -M. Zhang, A. Pezzotta and C. Enz, "Charge-Based Modeling of Radiation Damage in Symmetric Double-Gate MOSFETs," in IEEE Journal of the Electron Devices Society, vol. 6, pp. 85-94, 2018, doi: 10.1109/JEDS.2017.2772346.
    [20] A. Beckers, F. Jazaeri, and C. Enz, “Inflection Phenomenon in Cryogenic MOSFET Behavior,” IEEE Trans. Electron Devices, vol. 67, no. 3, pp. 1357–1360, 2020, doi: 10.1109/TED.2020.2965475.
    [21] Han, Y., Grützmacher, D., and Bluhm, J., “Silicon nano-devices for ultra-low power cryogenic electronics,” Jan. 2024, RWTH Aachen University PHD Thesis.
    [22] C.-C. Hsieh, “Compact Modeling of Advanced Fully-Depleted CMOS at Cryogenic Temperatures with BSIM-CMG,” 2022, NCKU MS Thesis.
    [23] A. Beckers, F. Jazaeri, A. Grill, S. Narasimhamoorthy, B. Parvais and C. Enz, "Physical Model of Low-Temperature to Cryogenic Threshold Voltage in MOSFETs," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 780-788, 2020, doi: 10.1109/JEDS.2020.2989629.
    [24] A. Beckers, F. Jazaeri and C. Enz, "Cryogenic MOSFET Threshold Voltage Model," ESSDERC 2019 - 49th European Solid-State Device Research Conference (ESSDERC), Cracow, Poland, 2019, pp. 94-97, doi: 10.1109/ESSDERC.2019.8901806.
    [25] S.-i. Takagi, A. Toriumi, M. Iwase, and H. Tango, "On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration," IEEE Transactions on Electron Devices, vol. 41, no. 12, pp. 2357-2362, 1994.
    [26] S. Gupta, S. K. Singh, R. A. Vega and A. Dixit, "Effective Channel Mobility Extraction and Modeling of 10-nm Bulk CMOS FinFETs in Cryogenic Temperature Operation for Quantum Computing Applications," in IEEE Transactions on Electron Devices, vol. 70, no. 4, pp. 1815-1822, April 2023, doi: 10.1109/TED.2023.3244159.
    [27] H. Oka, T. Inaba, S. Iizuka, H. Asai, K. Kato and T. Mori, "Effect of Conduction Band Edge States on Coulomb-Limiting Electron Mobility in Cryogenic MOSFET Operation," 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 2022, pp. 334-335, doi: 10.1109/VLSITechnologyandCir46769.2022.9830505.
    [28] F. Serra di Santa Maria et al., “Lambert-W function-based parameter extraction for FDSOI MOSFETs down to deep cryogenic temperatures,” Solid. State. Electron., vol. 186, no. August, 2021, doi: 10.1016/j.sse.2021.108175.
    [29] M. Shin et al., “Low temperature characterization of mobility in 14 nm FD-SOI CMOS devices under interface coupling conditions,” Solid. State. Electron., vol. 108, pp. 30–35, 2015, doi: 10.1016/j.sse.2014.12.013.
    [30] X.-R. Yu et al., "First Demonstration of Defect Elimination for Cryogenic Ge FinFET CMOS Inverter Showing Steep Subthreshold Slope by Using Ge-on-Insulator Structure," 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023.
    [31] Duan, Haoyuan. (2024). From MOSFET to FinFET to GAAFET: The evolution, challenges, and future prospects. Applied and Computational Engineering. 50. 113-120. 10.54254/2755-2721/50/20241285.
    [32] V. P. -H. Hu, M. -L. Fan, P. Su and C. -T. Chuang, "Comparative Leakage Analysis of GeOI FinFET and Ge Bulk FinFET," in IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3596-3600, Oct. 2013, doi: 10.1109/TED.2013.2278032.
    [33] M.-H. Chuang, “Cryogenic temperature Compact model Based on FinFET,” 2023, NCKU MS Thesis.
    [34] L. Varizat, G. Sou and M. Mansour, “BSIM3 parameters extraction of a 0.35 μm CMOS technology from 300K down to 77K,” 12th International Workshop on Low Temperature Electronics, Sep. 2016, Tempe, AZ, USA, doi: 10.1088/1742-6596/834/1/012002.
    [35] P. Kuthe, M. Müller and M. Schröter, "VerilogAE: An Open Source Verilog-A Compiler for Compact Model Parameter Extraction," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 1416-1423, 2020, doi: 10.1109/JEDS.2020.3023165.
    [36] Yogesh Singh Chauhan, Darsen Lu, Sriramkumar Venugopalan, Sourabh Khandelwal, Juan Pablo Duarte, Navid Paydavosi, Ai Niknejad, and Chenming Hu, “FinFET Modeling for IC Simulation and Design Using the BSIM-CMG Standard,” 2015, ISBN: 978-0-12-420031-9.
    [37] Girish Pahwa, Ahtisham Pampori, Chetan Kumar Dabhi, and Dinesh Rajasekharan. "BSIM-CMG 112.0.0beta0_4 Multi-Gate MOSFET Compact Model Technical Manual. (2024)." https://bsim.berkeley.edu/models/bsimcmg/.
    [38] Harshit Soni, "MOSFET (ABOUT, FABRICATION)," Feb. 2019. [Online]. Available: https://www.slideshare.net/slideshow/mosfetaboutfavrication/131301594.
    [39] Dutta, Tapas et al. “Impact of quantum effects on the short channel effects of III-V nMOSFETs in weak and strong inversion regimes.” Solid-state Electronics 88 (2013): 43-48.
    [40] Veena Misra, Mehmet C. Öztürk, "The Electrical Engineering Handbook," Academic Press, 2005, pp. 109-126, ISBN: 9780121709600, doi: 10.1016/B978-012170960-0/50012-8.
    [41] Kim, Dae Hwan, “Sub-Bandgap Optical GIDL Current Method for Extracting the Interface States in the Gate-to-Drain Overlapped Region of MOSFETs.” Oct. 2016.
    [42] G. Pahwa, P. Kushwaha, A. Dasgupta, S. Salahuddin and C. Hu, "Compact Modeling of Temperature Effects in FDSOI and FinFET Devices Down to Cryogenic Temperatures," in IEEE Transactions on Electron Devices, vol. 68, no. 9, pp. 4223-4230, Sept. 2021, doi: 10.1109/TED.2021.3097971.
    [43] Kuzum, Duygu & Krishnamohan, Tejas & Nainani, Aneesh & Sun, Yun & Pianetta, Piero & Wong, H.-S. Philip & Saraswat, Krishna. (2011). High-mobility Ge N-MOSFETs and mobility degradation mechanisms. Electron Devices, IEEE Transactions on. 58. 59 - 66. 10.1109/TED.2010.2088124.
    [44] Darsen Lu, “Ultra-low Voltage CMOS with Steep Swing Devices at Room and Cryogenic Temperatures,” 2024 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA) SC, Hsinchu, Taiwan, 2024.
    [45] F. Jazaeri, A. Pezzotta, and C. Enz, “Free Carrier Mobility Extraction in FETs,” IEEE TED, vol. 64, no. 12, pp. 5279–5283, Dec. 2017.
    [46] H. -C. Han, F. Jazaeri, A. D'Amico, A. Baschirotto, E. Charbon and C. Enz, "Cryogenic Characterization of 16 nm FinFET Technology for Quantum Computing," ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), Grenoble, France, 2021, pp. 71-74, doi: 10.1109/ESSCIRC53450.2021.9567747.
    [47] Das, R.R., Maity, S., Choudhury, A. et al. Temperature-dependent short-channel parameters of FinFETs. J Comput Electron 17, 1001–1012 (2018). https://doi.org/10.1007/s10825-018-1212-y.
    [48] Choudhary, S.; Yogesh, M.; Schwarz, D.; Funk, H. S.; Ghosh, S.; Sharma, S. K.; Schulze, J.; Gonsalves, K. E. Novel Process Integration Flow of Germanium-on-Silicon FinFETs for Low-Power Technologies. J. Vac. Sci. Technol. B 2023, 41 (5), 052203.
    [49] H. Miyata, T. Yamada, and D. K. Ferry, “Electron transport properties of a strained Si layer on a relaxed Si1−x Gex substrate by Monte Carlo simulation,” Appl. Phys. Lett., vol. 62, no. 21, pp. 2661–2663, 1993.
    [50] Tandon, Nandan & Albrecht, J.. (2015). Electron-phonon interaction and scattering in Si and Ge: Implications for phonon engineering. Journal of Applied Physics. 118. 045713. 10.1063/1.4927530.
    [51] Cryogenic Electronics and Quantum Information Processing, International Roadmap for Devices and Systems (IRDS) 2020 Edition, p. 31.
    [52] C. Hu, “Modern Semiconductor Devices for Integrated Circuits,” Pearson/Prentice Hall, New Jersey, 351 pages, 2010.
    [53] J. Robertson and L. Lin, "Fermi level pinning in Si, Ge and GaAs systems - MIGS or defects?," 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 2009, pp. 1-4, doi: 10.1109/IEDM.2009.5424406.
    [54] Zhang, J.F., Duan, M. Bias Temperature Instability of MOSFETs. Encyclopedia. Available online: https://encyclopedia.pub/entry/22906 (accessed on 18 July 2024).
    [55] Chiang, H. L., et al. "Cold CMOS as a power-performance-reliability booster for advanced FinFETs." 2020 IEEE Symposium on VLSI Technology. IEEE, 2020.
    [56] S. Mahapatra, Recent Advances in PMOS Negative Bias Temperature Instability: Characterization and Modeling of Device Architecture, Material and Process Impact. Springer, 2022.
    [57] Rai, M.K., Gupta, A. & Rai, S. Comparative Analysis & Study of Various Leakage Reduction Techniques for Short Channel Devices in Junctionless Transistors: A Review and Perspective. Silicon 14, 4423–4445 (2022). https://doi.org/10.1007/s12633-021-01181-6.
    [58] Ashburn, P., Bagnall, D. (2006). Silicon–Germanium: Properties, Growth and Applications. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-29185-7_22.
    [59] S. Mahapatra, M. Alam, et al., “Negative Bias Temperature Instability: Physics, Measurement, and Modeling,” Wiley, 2012.
    [60] Alam, M. A., & Mahapatra, S. (2005). A comprehensive model of PMOS NBTI degradation. Microelectronics Reliability, 45(1), 71-81.
    [61] B. Kaczer et al., "Atomistic approach to variability of bias-temperature instability in circuit simulations," 2011 International Reliability Physics Symposium, Monterey, CA, USA, 2011, pp. XT.3.1-XT.3.5, doi: 10.1109/IRPS.2011.5784604.

    無法下載圖示 校內:2029-08-21公開
    校外:2029-08-21公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE