| 研究生: |
白育嘉 Pai, Yu-Chia |
|---|---|
| 論文名稱: |
先進鍺/矽通道鰭式場效電晶體之低溫元件模型效能及可靠度特性分析 Compact Modeling with Power Performance Analysis & Reliability Characterization of Advanced Cryogenic Ge/Si-Channel FinFETs |
| 指導教授: |
盧達生
Lu, Darsen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 英文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 簡易模型 、BSIM-CMG 、低溫 、FinFET 、GeOI 、次臨界擺幅 、遷移率 、頻率 、功耗 、可靠度 、NBTI |
| 外文關鍵詞: | Compact Modeling, BSIM-CMG, Cryogenic, FinFET, GeOI, Subthreshold Swing, Mobility, Frequency, Power Consumption, Reliability, NBTI |
| ORCID: | 0009-0002-7801-3656 |
| 相關次數: | 點閱:67 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] Schaller, Robert R. "Moore's law: past, present and future." IEEE spectrum 34.6 (1997): 52-59.
[2] Dennard, Robert H., et al. "Design of ion-implanted MOSFET's with very small physical dimensions." IEEE Journal of Solid-State Circuits 9.5 (1974): 256-268.
[3] K. Rupp, M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, C. Batten, and C. Moore. "40 Years of Microprocessor Trend Data." [Online]. Available: https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/.
[4] ITRS 2.0 Publication: 5_2015 ITRS 2.0_More Moore.pdf, p. 14. [Online]. Available: http://www.itrs2.net/.
[5] Hu, Chenming. "Finfet and other new transistor technologies." Univ. of California (2011).
[6] Cao, Wei, and Kaustav Banerjee. "Is negative capacitance FET a steep-slope logic switch?." Nature communications 11.1 (2020): 1-8.
[7] Radisavljevic, Branimir, et al. "Single-layer MoS 2 transistors." Nature nanotechnology 6.3 (2011): 147-150.
[8] Jason Woo. Develop a low-temperature (77K) device technology to achieve a 25X improvement in performance/power compared to state-of-the-art (SOA) room temperature CPUs. DARPA, 2021.
[9] Brian Bailey. “Cryogenic CMOS Becomes Cool." [Online]. Available: https://semiengineering.com/cryogenic-cmos-becomes-cool/.
[10] E. Garzón, A. Teman, and M. Lanuzza, "Embedded memories for cryogenic applications," Electronics, vol. 11, no. 1, p. 61, 2021.
[11] A. Beckers, F. Jazaeri and C. Enz, "Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K," in IEEE Journal of the Electron Devices Society, vol. 6, pp. 1007-1018, 2018, doi: 10.1109/JEDS.2018.2817458.
[12] S. M. Sze and K. K. Ng, Physics of Semiconductor Devices. Hoboken, NJ, USA: Wiley, 2006.
[13] M. Rudan, "Physics of Semiconductor Devices," Springer New York, 2015.
[14] A. Beckers, F. Jazaeri and C. Enz, "Cryogenic MOS Transistor Model," in IEEE Transactions on Electron Devices, vol. 65, no. 9, pp. 3617-3625, Sept. 2018, doi: 10.1109/TED.2018.2854701.
[15] A. Beckers, F. Jazaeri and C. Enz, "Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors," in IEEE Electron Device Letters, vol. 41, no. 2, pp. 276-279, Feb. 2020, doi: 10.1109/LED.2019.2963379.
[16] H. Bohuslavskyi et al., "Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening," in IEEE Electron Device Letters, vol. 40, no. 5, pp. 784-787, May 2019, doi: 10.1109/LED.2019.2903111.
[17] K. -H. Kao et al., "Subthreshold Swing Saturation of Nanoscale MOSFETs Due to Source-to-Drain Tunneling at Cryogenic Temperatures," in IEEE Electron Device Letters, vol. 41, no. 9, pp. 1296-1299, Sept. 2020, doi: 10.1109/LED.2020.3012033.
[18] Y. Tsividis and C. “McAndrew, Operation and Modeling of the MOS Transistor,” London, U.K.: Oxford Univ. Press, 2011.
[19] F. Jazaeri, C. -M. Zhang, A. Pezzotta and C. Enz, "Charge-Based Modeling of Radiation Damage in Symmetric Double-Gate MOSFETs," in IEEE Journal of the Electron Devices Society, vol. 6, pp. 85-94, 2018, doi: 10.1109/JEDS.2017.2772346.
[20] A. Beckers, F. Jazaeri, and C. Enz, “Inflection Phenomenon in Cryogenic MOSFET Behavior,” IEEE Trans. Electron Devices, vol. 67, no. 3, pp. 1357–1360, 2020, doi: 10.1109/TED.2020.2965475.
[21] Han, Y., Grützmacher, D., and Bluhm, J., “Silicon nano-devices for ultra-low power cryogenic electronics,” Jan. 2024, RWTH Aachen University PHD Thesis.
[22] C.-C. Hsieh, “Compact Modeling of Advanced Fully-Depleted CMOS at Cryogenic Temperatures with BSIM-CMG,” 2022, NCKU MS Thesis.
[23] A. Beckers, F. Jazaeri, A. Grill, S. Narasimhamoorthy, B. Parvais and C. Enz, "Physical Model of Low-Temperature to Cryogenic Threshold Voltage in MOSFETs," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 780-788, 2020, doi: 10.1109/JEDS.2020.2989629.
[24] A. Beckers, F. Jazaeri and C. Enz, "Cryogenic MOSFET Threshold Voltage Model," ESSDERC 2019 - 49th European Solid-State Device Research Conference (ESSDERC), Cracow, Poland, 2019, pp. 94-97, doi: 10.1109/ESSDERC.2019.8901806.
[25] S.-i. Takagi, A. Toriumi, M. Iwase, and H. Tango, "On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration," IEEE Transactions on Electron Devices, vol. 41, no. 12, pp. 2357-2362, 1994.
[26] S. Gupta, S. K. Singh, R. A. Vega and A. Dixit, "Effective Channel Mobility Extraction and Modeling of 10-nm Bulk CMOS FinFETs in Cryogenic Temperature Operation for Quantum Computing Applications," in IEEE Transactions on Electron Devices, vol. 70, no. 4, pp. 1815-1822, April 2023, doi: 10.1109/TED.2023.3244159.
[27] H. Oka, T. Inaba, S. Iizuka, H. Asai, K. Kato and T. Mori, "Effect of Conduction Band Edge States on Coulomb-Limiting Electron Mobility in Cryogenic MOSFET Operation," 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 2022, pp. 334-335, doi: 10.1109/VLSITechnologyandCir46769.2022.9830505.
[28] F. Serra di Santa Maria et al., “Lambert-W function-based parameter extraction for FDSOI MOSFETs down to deep cryogenic temperatures,” Solid. State. Electron., vol. 186, no. August, 2021, doi: 10.1016/j.sse.2021.108175.
[29] M. Shin et al., “Low temperature characterization of mobility in 14 nm FD-SOI CMOS devices under interface coupling conditions,” Solid. State. Electron., vol. 108, pp. 30–35, 2015, doi: 10.1016/j.sse.2014.12.013.
[30] X.-R. Yu et al., "First Demonstration of Defect Elimination for Cryogenic Ge FinFET CMOS Inverter Showing Steep Subthreshold Slope by Using Ge-on-Insulator Structure," 2023 International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2023.
[31] Duan, Haoyuan. (2024). From MOSFET to FinFET to GAAFET: The evolution, challenges, and future prospects. Applied and Computational Engineering. 50. 113-120. 10.54254/2755-2721/50/20241285.
[32] V. P. -H. Hu, M. -L. Fan, P. Su and C. -T. Chuang, "Comparative Leakage Analysis of GeOI FinFET and Ge Bulk FinFET," in IEEE Transactions on Electron Devices, vol. 60, no. 10, pp. 3596-3600, Oct. 2013, doi: 10.1109/TED.2013.2278032.
[33] M.-H. Chuang, “Cryogenic temperature Compact model Based on FinFET,” 2023, NCKU MS Thesis.
[34] L. Varizat, G. Sou and M. Mansour, “BSIM3 parameters extraction of a 0.35 μm CMOS technology from 300K down to 77K,” 12th International Workshop on Low Temperature Electronics, Sep. 2016, Tempe, AZ, USA, doi: 10.1088/1742-6596/834/1/012002.
[35] P. Kuthe, M. Müller and M. Schröter, "VerilogAE: An Open Source Verilog-A Compiler for Compact Model Parameter Extraction," in IEEE Journal of the Electron Devices Society, vol. 8, pp. 1416-1423, 2020, doi: 10.1109/JEDS.2020.3023165.
[36] Yogesh Singh Chauhan, Darsen Lu, Sriramkumar Venugopalan, Sourabh Khandelwal, Juan Pablo Duarte, Navid Paydavosi, Ai Niknejad, and Chenming Hu, “FinFET Modeling for IC Simulation and Design Using the BSIM-CMG Standard,” 2015, ISBN: 978-0-12-420031-9.
[37] Girish Pahwa, Ahtisham Pampori, Chetan Kumar Dabhi, and Dinesh Rajasekharan. "BSIM-CMG 112.0.0beta0_4 Multi-Gate MOSFET Compact Model Technical Manual. (2024)." https://bsim.berkeley.edu/models/bsimcmg/.
[38] Harshit Soni, "MOSFET (ABOUT, FABRICATION)," Feb. 2019. [Online]. Available: https://www.slideshare.net/slideshow/mosfetaboutfavrication/131301594.
[39] Dutta, Tapas et al. “Impact of quantum effects on the short channel effects of III-V nMOSFETs in weak and strong inversion regimes.” Solid-state Electronics 88 (2013): 43-48.
[40] Veena Misra, Mehmet C. Öztürk, "The Electrical Engineering Handbook," Academic Press, 2005, pp. 109-126, ISBN: 9780121709600, doi: 10.1016/B978-012170960-0/50012-8.
[41] Kim, Dae Hwan, “Sub-Bandgap Optical GIDL Current Method for Extracting the Interface States in the Gate-to-Drain Overlapped Region of MOSFETs.” Oct. 2016.
[42] G. Pahwa, P. Kushwaha, A. Dasgupta, S. Salahuddin and C. Hu, "Compact Modeling of Temperature Effects in FDSOI and FinFET Devices Down to Cryogenic Temperatures," in IEEE Transactions on Electron Devices, vol. 68, no. 9, pp. 4223-4230, Sept. 2021, doi: 10.1109/TED.2021.3097971.
[43] Kuzum, Duygu & Krishnamohan, Tejas & Nainani, Aneesh & Sun, Yun & Pianetta, Piero & Wong, H.-S. Philip & Saraswat, Krishna. (2011). High-mobility Ge N-MOSFETs and mobility degradation mechanisms. Electron Devices, IEEE Transactions on. 58. 59 - 66. 10.1109/TED.2010.2088124.
[44] Darsen Lu, “Ultra-low Voltage CMOS with Steep Swing Devices at Room and Cryogenic Temperatures,” 2024 International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA) SC, Hsinchu, Taiwan, 2024.
[45] F. Jazaeri, A. Pezzotta, and C. Enz, “Free Carrier Mobility Extraction in FETs,” IEEE TED, vol. 64, no. 12, pp. 5279–5283, Dec. 2017.
[46] H. -C. Han, F. Jazaeri, A. D'Amico, A. Baschirotto, E. Charbon and C. Enz, "Cryogenic Characterization of 16 nm FinFET Technology for Quantum Computing," ESSCIRC 2021 - IEEE 47th European Solid State Circuits Conference (ESSCIRC), Grenoble, France, 2021, pp. 71-74, doi: 10.1109/ESSCIRC53450.2021.9567747.
[47] Das, R.R., Maity, S., Choudhury, A. et al. Temperature-dependent short-channel parameters of FinFETs. J Comput Electron 17, 1001–1012 (2018). https://doi.org/10.1007/s10825-018-1212-y.
[48] Choudhary, S.; Yogesh, M.; Schwarz, D.; Funk, H. S.; Ghosh, S.; Sharma, S. K.; Schulze, J.; Gonsalves, K. E. Novel Process Integration Flow of Germanium-on-Silicon FinFETs for Low-Power Technologies. J. Vac. Sci. Technol. B 2023, 41 (5), 052203.
[49] H. Miyata, T. Yamada, and D. K. Ferry, “Electron transport properties of a strained Si layer on a relaxed Si1−x Gex substrate by Monte Carlo simulation,” Appl. Phys. Lett., vol. 62, no. 21, pp. 2661–2663, 1993.
[50] Tandon, Nandan & Albrecht, J.. (2015). Electron-phonon interaction and scattering in Si and Ge: Implications for phonon engineering. Journal of Applied Physics. 118. 045713. 10.1063/1.4927530.
[51] Cryogenic Electronics and Quantum Information Processing, International Roadmap for Devices and Systems (IRDS) 2020 Edition, p. 31.
[52] C. Hu, “Modern Semiconductor Devices for Integrated Circuits,” Pearson/Prentice Hall, New Jersey, 351 pages, 2010.
[53] J. Robertson and L. Lin, "Fermi level pinning in Si, Ge and GaAs systems - MIGS or defects?," 2009 IEEE International Electron Devices Meeting (IEDM), Baltimore, MD, USA, 2009, pp. 1-4, doi: 10.1109/IEDM.2009.5424406.
[54] Zhang, J.F., Duan, M. Bias Temperature Instability of MOSFETs. Encyclopedia. Available online: https://encyclopedia.pub/entry/22906 (accessed on 18 July 2024).
[55] Chiang, H. L., et al. "Cold CMOS as a power-performance-reliability booster for advanced FinFETs." 2020 IEEE Symposium on VLSI Technology. IEEE, 2020.
[56] S. Mahapatra, Recent Advances in PMOS Negative Bias Temperature Instability: Characterization and Modeling of Device Architecture, Material and Process Impact. Springer, 2022.
[57] Rai, M.K., Gupta, A. & Rai, S. Comparative Analysis & Study of Various Leakage Reduction Techniques for Short Channel Devices in Junctionless Transistors: A Review and Perspective. Silicon 14, 4423–4445 (2022). https://doi.org/10.1007/s12633-021-01181-6.
[58] Ashburn, P., Bagnall, D. (2006). Silicon–Germanium: Properties, Growth and Applications. In: Kasap, S., Capper, P. (eds) Springer Handbook of Electronic and Photonic Materials. Springer Handbooks. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-29185-7_22.
[59] S. Mahapatra, M. Alam, et al., “Negative Bias Temperature Instability: Physics, Measurement, and Modeling,” Wiley, 2012.
[60] Alam, M. A., & Mahapatra, S. (2005). A comprehensive model of PMOS NBTI degradation. Microelectronics Reliability, 45(1), 71-81.
[61] B. Kaczer et al., "Atomistic approach to variability of bias-temperature instability in circuit simulations," 2011 International Reliability Physics Symposium, Monterey, CA, USA, 2011, pp. XT.3.1-XT.3.5, doi: 10.1109/IRPS.2011.5784604.
校內:2029-08-21公開