簡易檢索 / 詳目顯示

研究生: 謝明宇
Hsieh, Ming-Yu
論文名稱: 銀奈米立方體與銀奈米線構成之大規模奈米間隙應用於表面增強拉曼光譜之研究
SERS substrate with hot spots derived from massive nanogaps between silver nanocubes and nanowires
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 93
中文關鍵詞: 銀奈米立方體銀奈米線表面增強拉曼光譜
外文關鍵詞: silver nanocube, silver nanowire, SERS
相關次數: 點閱:69下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是使用銀奈米顆粒利用塗佈滴落法散布在銀奈米線上來產生高密度奈米間隙的基板,進而達到偵測其他生物而非傳統拉曼分子R6G或者BPE等的待測物。
    第一部分的研究主要是要利用銀奈米線以及銀奈米顆粒來組合成高奈米間隙密度的基板,在拉曼光譜的測量發現銀奈米立方體相較於銀奈米球有較佳的增顯,然而也借由調整銀奈米線覆蓋於ITO基板的量來達到改善基板均勻度的效果。實驗中用可見光光譜來確認銀奈米線以及銀奈米立方體的電漿共振交互作用,從實驗的結果選擇出最佳的基板製作條件,來達到偵測生物分子的訴求。
    第二部分是利用第一部分所組裝出最適化的基板,來偵測其他的拉曼分子如1,2-二(4-吡啶基)乙烯以及生化分子胺基酸、蛋白質等等。最適化的基板在檢測1,2-二(4-吡啶基)乙烯有良好的效果,增顯因子可接近1011,由實驗結果發現當環境的PH值偏鹼時,胺基酸會有較高的拉曼強度,另外也發現蛋白質在帶電與否況下的拉曼增顯強度,最後比較出第一部分所製造出來的基板適合偵測較大分子如牛血清蛋白,而自組裝形成的銀奈米立方體/銀鏡像基板則適合偵測較小分子如Rhodamine 6G。

    In this thesis, it studies on SERS substrate with hot spots derived from massive nanogaps between silver nanocubes and nanowires. It creates lots of nanogap structure by drop-cast the silver nanoparticles on silver nanowires. The substrate would be applied to detect many analytes different from traditional analytes such as Rhodamine 6G or trans-1 2-bis(4-pyridyl)ethylene. This research can be divided into two parts:
    In first section, utilize the silver nanoparticles and nanowires to manufacture the high density nanogap substrates. The Raman spectra results indicated that silver nanocubes has better enhancement than nanospheres. the Raman uniformity of substrate improved obviously by changing the amount of silver nanowires which is deposit on the ITO surface. The UV/Vis spectra showed the surface plasmon resonant between silver nanowires and nanocubes. Optimized the parameters of silver nanowires and nanocubes' weight flux to fabricate a high performance substrate then detect other biomolecules,
    at the second part, the optimized substrate is applied to detect trans-1 2-bis(4-pyridyl)ethylene and biomolecules such as proteins and amino acids. The Raman spectra revealed that the enhancement factor is almost 1011 when trans-1 2-bis(4-pyridyl)ethylene served as analyte. The results showed a stronger Raman intensity of amino acids when it's PH value of surrounding getting higher. The thesis also studies on sensing the proteins when it was whether charged. At last, the optimized substrate were compared to substrates manufactured by self assembled monolayer method. The result indicated that the optimized substrate was better for sensing when the analytes with largersize such as Bovine Serum Albumin, however substrates manufactured by self assembled monolayer method was better for sensing when the analytes with smaller size such as Rhodamine 6G

    中文摘要 I ABSTRACT II 誌謝 IV 目錄 V 圖目錄 IX 表格目錄 XIII 符號 XIV 第一章、緒論 1 1-1. 表面增強拉曼散射 1 1-1-1.拉曼光譜原理 1 1-1-2.表面增強拉曼散射簡介 2 1-2.金屬表面電漿共振 6 1-2-1.金屬表面電漿共振原理與簡介 6 1-2-2銀奈米材料於表面電漿共振之行為影響 8 1-2-3.奈米間隙對於金屬表面電漿共振以及表面增強拉曼散射之影響 8 1-3.銀奈米材料作為表面增強拉曼基板之簡介 10 1-3-1.銀奈米材料作為表面增強拉曼訊號的機制與特性 10 1-3-2.銀奈米顆粒與線作為表面增強拉曼基板之簡介 12 1-4.表面增強拉曼散射應用於生化分子檢測 14 1-4-1.常見表面增強拉曼散射待測物之種類 14 1-4-2.常見生化分子應用於拉曼待測物之優缺 15 1-4-3.生化分子於不同條件下之表面拉曼散射行為影響 17 1-4-4.研究動機 18 第二章、基板的製備及組裝與拉曼檢測 28 2-1.銀奈米材料的合成 28 2-1-1.銀奈米線的製備 28 2-1-2.銀奈米顆粒製備 30 2-2.銀奈米材料特性分析 32 2-2-1.掃描式電子顯微鏡量測與性質確認 32 2-2-2.穿透式電子顯微鏡量測與性質確認 33 2-2-3.X光繞射儀量測與性質確認 34 2-3銀奈米線與銀奈米顆粒的基板的組裝以及特性 35 2-3-1.不同量奈米銀線覆蓋於基板之影響 35 2-3-1-1.基板製備 35 2-3-1-2.表面形貌分析 35 2-3-1-3.拉曼光譜量測與分析 37 2-3-2.不同量銀奈米顆粒附蓋於銀線基板之影響 38 2-3-2-1.銀奈米球以及立方體覆蓋於銀線基板製備 38 2-3-2-2.拉曼增強因子數值以及均勻度分析 39 2-3-2-3.表面形貌分析 40 2-3-3.基板最適化 41 2-3-3-1.表面形貌分析 41 2-3-3-2.拉曼均勻度以及增強因子數值分析 42 2-3-3-3.表面電漿共振波長分析 45 2-4.結論 47 第三章、不同待測物於基板之檢測分析 61 3-1. 1,2-二(4-吡啶基)乙烯作為待測物於拉曼光譜之分析 61 3-1-1.1,2-二(4-吡啶基)乙烯於不同雷射波長之拉曼光譜分析 61 3-1-2.1,2-二(4-吡啶基)乙烯溶液之紫外/可見光光譜分析 62 3-1-3.1,2-二(4-吡啶基)乙烯與RHODAMINE 6G做為拉曼待測物之比較 63 3-2.腺嘌呤與胺基酸分子於拉曼光譜之量測分析 64 3-2-1.前言 64 3-2-2.胺基酸以及腺嘌呤粉末於拉曼光譜量測分析 65 3-3-3.胺基酸以及腺嘌呤分子在不同PH值於拉曼光譜分析 66 3-3.蛋白質分子於拉曼光譜之量測分析 68 3-3-1.前言 68 3-3-2.溶菌黴拉曼光譜分析 69 3-3-3.牛血清蛋白拉曼光譜分析 69 3-3-4.牛血清蛋白於他種基板之拉曼光譜分析 70 3-4.結論 71 第四章、總結與建議 85 4-1.總結 85 4-2.未來工作建議 86 參考文獻 87

    1. M. Fleischmann, P. J. Hendra and A. J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode Chemical Physics Letters, 26, 163-166(1974)
    2. J. A. Creighton, Surface raman electromagnetic enhancement factors for molecules at the surface of small isolated metal spheres: The determination of adsorbate orientation from sers relative intensities ,Surface Science, 124, 209-219(1983)
    3. C. Fang and G. Wu, The molecular and supramolecular structures of three new lead(II) complexes with the pincer-type ligand 4′-chloro-2,2′:6′,2″-terpyridine(TpyCl),Journal of Molecular Structure,938, 336-340(2009)
    4. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari and M. S. Feld, Surface-enhanced non-linear Raman scattering at the single-molecule level , Journal of Physics: Condensed Matter, 14, R597(2002)
    5. D. S. Wang, H. Chew and M. Kerker, Surface enhanced Raman scattering (SERS) by molecules adsorbed at spherical particles, Appl. Opt., 19, 2256-2257(1980)
    6. H. Xu, J. Aizpurua, M. Käll and P. Apell, Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering, Physical Review E, 62, 4318-4324(2000)
    7. A. Campion and P. Kambhampati, Surface-enhanced Raman scattering, Chemical Society Reviews, 27, 241-250(1998)
    8. 曾賢德, 物理雙月刊, 中華民國物理學會,台北市,32, 2010)
    9. 王崇人, 科學發展, 行政院國家科學委員會,台北市,354, 2002)
    10. H. S. Noh, E. H. Cho, H. M. Kim, Y. D. Han and J. Joo, Organic solar cells using plasmonics of Ag nanoprisms, Organic Electronics, 14, 278-285(2013)
    11. S. Zhu, F. Li, C. Du and Y. Fu, A localized surface plasmon resonance nanosensor based on rhombic Ag nanoparticle array, Sensors and Actuators B: Chemical, 134, 193-198(2008)
    12. P. K. Jain and M. A. El-Sayed, Noble Metal Nanoparticle Pairs: Effect of Medium for Enhanced Nanosensing, Nano Letters, 8, 4347-4352(2008)
    13. Y. J. Oh and K. H. Jeong, Nanopillar Arrays: Glass Nanopillar Arrays with Nanogap-Rich Silver Nanoislands for Highly Intense Surface Enhanced Raman Scattering, Adv Mater, 24, 2234-7(2012)
    14. W.-H. Park and Z. H. Kim, Charge Transfer Enhancement in the SERS of a Single Molecule, Nano Letters, 10, 4040-4048(2010)
    15. F. Przybilla, A. Degiron, C. Genet, T. Ebbesen, F. de Léon-Pérez, J. Bravo-Abad, F. J. García-Vidal and L. Martín-Moreno, Efficiency and finite size effects in enhanced transmission through subwavelength apertures, Opt. Express, 16, 9571-9579(2008)
    16. S. Nie, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering, Science, 275, 1102-1106(1997)
    17. M. Rycenga, P. H. C. Camargo, W. Li, C. H. Moran and Y. Xia, Understanding the SERS Effects of Single Silver Nanoparticles and Their Dimers, One at a Time, The Journal of Physical Chemistry Letters, 1, 696-703(2010)
    18. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg and J. R. Krenn, Silver Nanowires as Surface Plasmon Resonators, Physical Review Letters, 95, 257403(2005)
    19. W. Li, P. H. Camargo, X. Lu and Y. Xia, Dimers of Silver Nanospheres: Facile Synthesis and Their Use as Hot Spots for Surface-Enhanced Raman Scattering, Nano Lett, 9, 485-90(2009)
    20. P. H. Camargo, L. Au, M. Rycenga, W. Li and Y. Xia, Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes, Chem Phys Lett, 484, 304-308(2010)
    21. P. H. Camargo, C. M. Cobley, M. Rycenga and Y. Xia, Measuring the surface-enhanced Raman scattering enhancement factors of hot spots formed between an individual Ag nanowire and a single Ag nanocube, Nanotechnology, 20, 434020(2009)
    22 Zhang, Applied Surface Science, Self-assembly Ag nanoparticle monolayer film as SERS Substrate for pesticide detection, 270, 292-294(2013)
    23. M. Rycenga, J. M. McLellan and Y. Xia, A SERS study of the molecular structure of alkanethiol monolayers on Ag nanocubes in the presence of aqueous glucose, Chemical Physics Letters, 463, 166-171(2008)
    24. C. Du, Y. You and Z. Shen, Polarized SERS study of an individual Ag nanowire with bulb humps, Optics Communications, 284, 5844-5846(2011)
    25. Y. Zhu, R. A. Dluhy and Y. Zhao, Sensors and Actuators B: Chemical, 157, 42-50(2011)
    26. W. J. Cho, Y. Kim and J. K. Kim, Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility, ACS Nano, 6, 249-255(2011)
    27. S. Mubeen, S. Zhang, N. Kim, S. Lee, S. Krämer, H. Xu and M. Moskovits, Plasmonic Properties of Gold Nanoparticles Separated from a Gold Mirror by an Ultrathin Oxide, Nano Letters, 12, 2088-2094(2012)
    28. J. M. McLellan, Z.-Y. Li, A. R. Siekkinen and Y. Xia, The SERS Activity of a Supported Ag Nanocube Strongly Depends on Its Orientation Relative to Laser Polarization, Nano Letters, 7, 1013-1017(2007)
    29. N. L. Netzer, R. Gunawidjaja, M. Hiemstra, Q. Zhang, V. V. Tsukruk and C. Jiang,Formation and Optical Properties of Compression-Induced Nanoscale Buckles on Silver Nanowires, ACS Nano, 3, 1795-1802(2009)
    30. J. Gao, Y. Hu, S. Li, Y. Zhang and X. Chen, Adsorption of benzoic acid, phthalic acid on gold substrates studied by surface-enhanced Raman scattering spectroscopy and density functional theory calculations , Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 104, 41-47(2013)
    31. M. D. Thi and K. Volka, Surface-enhanced Raman spectroscopic and surface plasmon resonance in situ study of self-assembly of 4-mercaptobenzoic acid on gold surface , Journal of Molecular Structure, 976, 297-300(2010)
    32. M. Rycenga, X. Xia, C. H. Moran, F. Zhou, D. Qin, Z. Y. Li and Y. Xia, Generation of Hot Spots with Silver Nanocubes for Single-Molecule Detection by Surface-Enhanced Raman Scattering, Angew.Chem Int Ed Engl, 50, 5473-7(2011)
    33. H. H. Gunthard, Infrared Spectroscopy, Marcel Dekker, (2001)
    34. E. Temur, I. H. Boyaci, U. Tamer, H. Unsal and N. Aydogan, A highly sensitive detection platform based on surface-enhanced Raman scattering for Escherichia coli enumeration, Anal Bioanal Chem, 397, 8,1595-604(2010)
    35. X. Hou, L. Wu, W. Xu, L. Qin, C. Wang, X. Zhang and J. Shen, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 198–200, 135-140(2002)
    36 M. S. Schmidt, J. Hubner and A. Boisen, Glass Nanopillar Arrays with Nanogap-Rich Silver Nanoislands for Highly Intense Surface Enhanced Raman Scattering, Adv Mater, 24, OP11-8(2012)
    37. Y. Y. Lin, J. D. Liao, Y. H. Ju, C. W. Chang and A. L. Shiau, Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus, Nanotechnology, 22, 185308(2011)
    38. Z. Li, W. Ruan, W. Song, X. Xue, Z. Mao, W. Ji and B. Zhao, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 82, 456-460(2011)
    39. K. István, G. Keresztury and A. Szép, SERS detection of protein biochip fabricated by etching polystyrene template, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 59, 1709-1723(2003)
    40. A. Brambilla, A. Philippidis, A. Nevin, D. Comelli, G. Valentini and D. Anglos, Adapting and testing a portable Raman spectrometer for SERS analysis of amino acids and small peptides, Journal of Molecular Structure,1044,24,121-127(2013)
    41. A. Singha, S. Dasgupta and A. Roy, Comparison of metal–amino acid interaction in Phe–Ag and Tyr–Ag complexes by spectroscopic measurements, Biophysical Chemistry, 120, 3, 215-224(2006)
    42. Y. Sun, B. Gates, B. Mayers and Y. Xia, Crystalline Silver Nanowires by Soft Solution Processing, Nano Letters, 2, 165-168(2002)
    43. S. E. Skrabalak, L. Au, X. Li and Y. Xia, Facile synthesis of Ag nanocubes and Au nanocages, Nat. Protocols, 2, 2182-2190(2007)
    44. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel and T. A. Witten, Capillary flow as the cause of ring stains from dried liquid drops Nature, 389, 827-829(1997)
    45. S. Nakashima, A. Yamamoto, Y. Asada, N. Koga and T. Okuda, New assembled Fe-trans-1,2-bis(4-pyridyl)ethylene-NCS(NCSe) complexes – hydrogen bonded and π–π interacted structure and grid structure enclathrating ligand, Inorganica Chimica Acta, 358, 2, 257-264(2005)
    46. B. V. Amsterdam, F.t.-i.r. and laser-Raman spectra of adenine and adenosine, Carbohydrate Research, 131, 1, 15(1984)
    47. G. Zhu, X. Zhu, Q. Fan and X. Wan, Raman spectra of amino acids and their aqueous solutions, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 78, 3, 1187-1195(2011)

    下載圖示 校內:2016-07-25公開
    校外:2016-07-25公開
    QR CODE