簡易檢索 / 詳目顯示

研究生: 陳廷安
Chen, Ting-An
論文名稱: 探討降雨入滲與地震對三維邊坡穩定分析影響之研究-以南市172線溫泉公路邊坡為例
Analysis of Three-dimensional Slope Stability with Rainfall Infiltration and Earthquake on the Tainan County Highway 172
指導教授: 陳昭旭
Chen, Chao-Shi
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 179
中文關鍵詞: 市道172線降雨入滲真實地震邊坡穩定分析FLAC3D
外文關鍵詞: The Tainan county highway 172, Rainfall infiltration, Real earthquake record, FLAC3D
相關次數: 點閱:52下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為探討市道172線42K+300處邊坡在不同降雨強度與三個地震紀錄下之邊坡穩定性,並評估兩者造成複合型災害的影響。本研究首先使用GMS (Groundwater Modeling System)建立研究區域的三維地層模型與常時地下水位面,再輸入FLAC3D(Fast Lagrangian Analysis of Continua in 3 Dimensions)進行降雨入滲與地震模擬,探討此區域邊坡之安全性。並將分析結果、現地監測資料與二維模型分析結果進行比較,顯示本研究過程與結果的合理性。
    本研究以四種不同降雨強度(100、200、350、500 mm/day)與2022年9月18日台東地震(ML= 6.8)及2024年4月3日花蓮地震(ML= 7.2)進行模擬。在降雨入滲的模擬結果顯示水位上升約0.43~2.93公尺,隨著降雨強度的增加,坡面飽和度的範圍越大,從下邊坡往中邊坡延伸,導致東側邊坡有崩塌可能性,而商家與民宅區域相對穩定;在地震模擬中,先以距離研究區域最近的沄水國小測站紀錄(PGA約為61gal)進行分析。結果顯示對於本研究區域商家與民宅影響不大,而東側邊坡則處在較於不穩定的狀態。
    在降雨入滲與地震聯合作用模擬下,結果顯示地震前的降雨入滲造成邊坡飽和度增加與地下水抬升,導致邊坡穩定性降低,相繼發生的地震使邊坡情況更加惡化,變得更加難以預測,崩塌範圍隨著震前累積降雨量的增加而持續擴大。依滑動方向趨勢結果,東側邊坡崩塌時會影響商家與民宅區域,使其處在危險之中。

    This study applies the shear strength reduction method to investigate three-dimensional slope stability with rainfall infiltration and earthquake on the slope at 42K+300 of County Highway 172 in Tainan City. First, GMS (Groundwater Modeling System) was used to build the realistic three-dimensional stratigraphic model and water table of the study area, and then FLAC3D (Fast Lagrangian Analysis of Continua in 3 Dimensions) was used to analyze slope stability with rainfall infiltration and earthquake.
    In the simulation of the combined action of rainfall infiltration and earthquake, the results show that rainfall infiltration before earthquake causes the increase of slope saturation and groundwater uplifting, which leads to the decrease of slope stability. Successive earthquakes aggravate the slope situation and make it more difficult to predict. The collapse range continues to expand with the increase of accumulated rainfall before earthquake. As a result of the sliding trend, the collapse of the eastern side slope will affect businesses and residential areas, putting them at risk.

    摘 要 i SUMMARY ii 致 謝 viii 目 錄 ix 表目錄 xiv 圖目錄 xvi 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程 3 第二章 文獻回顧 5 2.1 邊坡崩塌形式 5 2.2 邊坡穩定性之影響要素 7 2.2.1 降雨對邊坡穩定之影響 8 2.2.2 地震對邊坡穩定之影響 9 2.3 未飽和土壤 10 2.3.1 未飽和土壤力學行為 11 2.3.2 未飽和土壤吸力 15 2.3.3 土壤水分特性曲線 17 2.3.4 降雨入滲 21 2.4 台灣近年地震危害 24 2.5 邊坡穩定性分析 25 2.5.1 極限平衡法 26 2.5.2 數值分析法 28 2.5.3 二維與三維邊坡差異性 30 2.6 邊坡安全評估標準 32 第三章 研究區域概況 33 3.1 研究區域介紹 33 3.2 區域地質條件 34 3.3 歷史災害 36 3.4 潛在滑動塊體 38 3.5 地質鑽探與監測數據 40 3.5.1 鑽探調查結果 41 3.5.2 傾斜管監測數據 43 3.5.3 地下水監測數據 50 第四章 研究方法 52 4.1 數值模型生成 52 4.1.1 地層模型設置 53 4.1.2 地層模型比較 55 4.1.3 地下水位面設置 58 4.1.4 MATLAB資料轉換 58 4.2 FlAC3D軟體介紹 61 4.2.1 力學運算方法 61 4.2.2 水力耦合運算方法 65 4.2.3 本構模型 68 4.2.4 分析步驟 70 4.3 地層參數建立 72 4.4 降雨入滲設計 73 4.4.1 降雨雨型 73 4.4.2 飽和-未飽和滲透係數 75 4.4.3 飽和-未飽和滲流場 76 4.4.4 水力邊界設置 79 4.5 地震模擬分析 80 4.5.1 動態邊界設置 80 4.5.2 阻尼配置 82 4.5.3 地震波傳播精準度分析 83 4.5.3.1 地震波輸入形式 83 4.5.3.2 網格尺寸限制與影響 85 4.5.3.3 地震波頻率過濾 85 4.5.3.4 基線校正 85 4.6 剪力強度折減法 86 4.7 二維度邊坡穩定性分析 89 4.7.1 二維模型邊界條件設置 89 第五章 結果與討論 92 5.1 常時邊坡穩定分析 93 5.2 降雨入滲對邊坡穩定之影響 95 5.2.1 孔隙水壓 95 5.2.2 飽和度 100 5.2.3 不同降雨強度之安全係數 102 5.3 地震對邊坡穩定之影響 105 5.3.1 分析地震I對研究區域之影響 105 5.3.1.1 地震I之地震波校正 107 5.3.1.2 地震I之安全係數分布 111 5.3.2 分析地震II對研究區域之影響 114 5.3.2.1 地震II之地震波校正 115 5.3.2.2 地震II之安全係數分布 119 5.3.3 模擬地震III在關子嶺地區對研究區域之影響 122 5.3.3.1 地震III之地震波校正 123 5.3.3.2 地震III在關子嶺地區之安全係數分布 127 5.4 降雨入滲與台東地震對邊坡穩定之影響 129 5.4.1 降雨入滲與地震I之安全係數分布 129 5.5 滑動面分析 137 5.5.1 降雨入滲引起之滑動面 138 5.5.2 地震引起之滑動面 143 第六章 結論與建議 147 6.1 結論 147 6.2 建議 149 參考文獻 150

    1. Azocar, K., Hazzard, J., “The influence of curvature on the stability of rock slopes.” Paper presentrd at the 13th ISRM International Congress of Rock Mechanics, 2015
    2. Bishop, A.W., “The use of the slip circle in the stability analysis of slope.” Geotechnique, 5(1), pp.7-17, 1955.
    3. Bishop, A.W., “The principle of effective stress.” Teknisk ukeblad, 39, pp.859-863, 1959.
    4. Bodman, G.B., Colman, E., “Moisture and energy conditions during downward entry of water into soils.” Soil Science Society of America Journal, 8(C), pp.116-122, 1944.
    5. Brönnimann, C.S., “Effect of groundwater on landslide triggering.” EPFL Scientific Publication, 2011.
    6. Brooks, R.H., and Corey, A.T., “Hydraulic properties of porous media.” Hydrology Paper, Vol. 3, Colorado State University, Fort Collins, 1964.
    7. Bordoni, M., Meisina, C., Valentino, R.,Lu, N., Bittelli, M., Chersich, S., “Hydrological factors affecting rainfall-induced shallow landslides: From the field monitoring to a simplified slope stability analysis.” Engineering Geology, 193, pp.19-37, 2015.
    8. Cruden, D.M., “A simple definition of a landslide.” Bulletin of the Association of Engineering Geologists, 43, pp.27-29, 1993.
    9. Cala, M., and Flisiak, J., “Slope stability analysis with FLAC and limit equilibrium methods.” FLAC and Numerical Modeling in Geomechanics, 2001.
    10. Chen, Y.L., Liu, G.Y., Li, N., Du, X., Wang, S.R., Azzam, R., “Stability evaluation of slope subjected to seismic effect combined with consequent rainfall.” Engineering Geology, 266, 2020.
    11. Croney, D., Coleman, J., “Soil thermodynamics applied to the movement of moisture in road foundations.”, Vol. 3, pp.163-177, 1948.
    12. Fellenius, W., ”Erdstatische berechnungen mit reibung und kohasion.“ Ernst & Sohn, Berlin, 1927.
    13. Fredlund, D.G., Morgenstern, N.R., Widger, R., “The shear strength of unsaturated soils.” Canadian geotechnical journal, 15(3), pp.313-321, 1978.
    14. Fredlund, D.G., Rahardjo, H., “Soil mechanics for unsaturated soils:” John Wiley & Sons, 1993.
    15. Fredlund, D.G., Xing, A., “Equations for the soil-water characteristic curve.” Canadian geotechnical journal, 31(4), pp.521-532, 1994.
    16. Fredlund, D.G., Xing, A., Fredlund, M.D., Barbour, S., “The relationship of the unsaturated soil shear strength to the soil-water characteristic curve.” Can. Geotech. J.,33, pp.440–448, 1996.
    17. Fredlund, M.D., Fredlund, D.G., Zhang, L., “Moving from 2D to a 3D unsaturated slope stability analysis.” PanAm Unsaturated Soils, pp.136-145, 2017.
    18. Gardner, W.R., “Some steady state solutions of the unsaturated moisture flow equation with application to evaporation from a water Table.” Soil Science, 85, pp.228-232, 1958.
    19. Green, W.H., Ampt, G., “Studies on soil phyics.” The Journal of Agricultural Science, 4(1), pp.1-24, 1911.
    20. Hungr, O., Leroueil, S., Picarelli, L., “The Varnes classification of landslide types, an update.” Landslides, 11(2), pp.167-194, 2014.
    21. Itasca., “Fast lagrangian analysis of continua in 3 dimension user’s guild.” USA: Itasca Consulting Group, 2009.
    22. Janbu, N., “Application of composite slip surfaces for stability analyses.” European Conf. on Stability of Earth Slopes, Stockholm, 3, pp.43-49, 1954.
    23. Janbu, N., Bjerrum, L., Kjaernsli, B., “Soil mechanics applied to some engineering problems.” Norwegian Geotechnical Institute, 16, pp.5-26, 1956.
    24. Khalili, N., and Khabbaz, M.H., “A unique relationship for χ for the determination of the shear strength of unsaturated soils.” Geotechnique, 48(2), pp.1-7, 1998.
    25. Krahn, J., and Fredlund, D.G., “On total matric and osmotic suction.” Soil Science, 115(5), pp.339- 348, 1972.
    26. Lysmer, J., Kuhlemeyer, R.L., “Finite dynamic model for infinite media.” Journal of Engineering Mechanics Division, 95, pp.859-878, 1969.
    27. Lysmer, J., Kuhlemeyer, R.L., “Finite element method accuracy for wave propagation problems.” Journal of the Soil Dynamics Division, 99, pp.421-427, 1973.
    28. Lu, N., and Likos, W.J., “Unsaturated soil mechanics.” John Wiley & Sons, Inc., Hoboken, pp.30-45, 2004.
    29. Lu, N., Godt, J.W., Wu, D.T., “A closed‐form equation for effective stress in unsaturated soil.” Water Resources Research, 46(5), 2010.
    30. Lumb, P., “Slope failures in Hong Kong.” Quarterly Journal of Engineering Geology, 8(1), pp.31-65, 1975.
    31. Lu, X.B., Ye, T.L., Zhang, X.H., Cui, P., Hu, K.H., “Experimental and numerical analysis on the responses of slope under rainfall.” Natural Hazards, 64, pp.887-902, 2012.
    32. Li, W.C., Lee, L.M., Cai, H., Dai, F.C., Wang, M.L., “Combined roles of saturated permeability and rainfall characteristics on surficial failure of homogeneous soil slope.” Engineering Geology, 153, pp.105-113, 2013.
    33. Lann, T., Bao, H., Lan, H., Zheng, H., Yan, C., Peng, J., “Hydro-mechanical effects of vegetation on slope stability: A review.” Science of The Total Environment, 926, 2024.
    34. Matsui, T., and San, K.C., “Finite element slope stability analysis by shear strength reduction technique.” Soils and foundations, 32(1), pp.59-70, 1992.
    35. Mein, R.G., and Larson, C.L., “Modeling Infiltration during a Steady Rain.” Water Resources Research, 9, pp.384-394, 1973.
    36. Morgenstern, N.R., Price, V.E., “The analysis of the stability of general slip surfaces.” Geotechnique, 15(1), pp.79-93, 1965.
    37. Roscoe, K.H., “The Influence of Strains in Soil Mechanics.” Geotechnique, 20(2), pp.129-170, 1970.
    38. Rodrı´guez, C.E., Bommer, J.J., Chandler, R.J., “Earthquake-induced landslides: 1980–1997.” Soil Dynamics and Earthquake Engineering, 18(5), pp.325-346, 1999.
    39. Rahardjo, H., Kim, Y., Satyanaga, A., “Role of unsaturated soil mechanics in geotechnical engineering.” International Journal of Geo-Engineering, 10(8), 2019.
    40. Spencer, E., “A method of analysis of the stability of embankments assuming parallel interslice forces.” Geotechnique, 17(1), pp.11-26, 1967.
    41. Sun, P., Wang, H., Wang, G., Li, R., Zhang, Z., Huo, X., “Field model experiments and numerical analysis of rainfall-induced shallow loess landslides.” Engineering Geology, 295, 2021.
    42. Van Genuchten, M. T., “A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils.” Soil Science Society of America Journal, 44, pp.892-898, 1980.
    43. Van Genuchten, M.T., Nielsen, D., “On describing and predicting the hydraulic properties.” Paper presented at the Annales Geophysicae, 1985.
    44. Vanapalli, S.K., Fredlund, D., Pufahl, D., Clifton, A., “Model for the prediction of shear strength with respect to soil suction.” Canadian geotechnical journal, 33(3), pp.379-392, 1996.
    45. Vanapalli, S.K., Fredlund, D.G., and Pufahl, D.E., “The influence of soil structure and stress history on the soil-water characteristics of a compacted till.” Geotechnique, 49(2), pp.143-159, 1999.
    46. Varnes, D. J., “Slope movement types and processes.” Special report, 176, pp.11-33, 1978.
    47. Vereecken, H., Weihermüller, L., Assouline, S., Šimůnek, J., Verhoef, A., Herbst, M., Archer, N., Mohanty, B., Montzka, C., Vanderborght, J., “Infiltration from the pedon to global grid scales: An overview and outlook for land surface modeling.” Vadose Zone Journal, 18(1), 2019.
    48. Wines, D., “A comparison of slope stability analyses in two and three dimensions.” Journal of the Southern African Institute of Mining and Metallurgy, 116(5), pp.399-406, 2016.
    49. Xing, X., Li, T., Fu, Y., “Determination of the related strength parameters of unsaturated loess with conventional triaxial test.” Environmental Earth Sciences, 75, pp.82-93, 2016.
    50. Zhang, Y., Chen, G., Wu, J., Zheng, L., Zhuang, X., “Numerical simulation of seismic slope stability analysis based on tension-shear failure mechanism.” Geotechnical Engineering, Vol. 43, No. 2, 2012.
    51. Zhang, Y., Zhang, J., Chen, G., Zheng, L., and Li, Y., “Effects of vertical seismic force on initiation of the Daguangbao landslide induced by the 2008 Wenchuan earthquake.” Soil Dynamics and Earthquake Engineering, 73, pp.91-102, 2015.
    52. Zhang, K., “Failure mechanism and stability analysis of rock soope.” Springer Singapore, 2020.
    53. 中華民國大地工程學會,「山坡地監測準則」,2017。
    54. 中央氣象署,「震度新分級」,2019
    55. 中央氣象署,「臺灣的災害性天氣」,2020。
    56. 中央氣象署,「地震測報中心」,2024。
    57. 內政部營建署,「建築物基礎構造設計規範」,2023。
    58. 水土保持局,「歷史影像平台」,2023。
    59. 台南市政府災害應變告示網,「歷史專案」,2024。
    60. 交通部交通技術標準規範公路類公路工程部,「公路邊坡工程設計規範」,2015。
    61. 交通部高速公路局,「大地工程設計注意事項」,2020。
    62. 行政院農業委員會,「水土保持技術規範」,2023。
    63. 地質調查及礦業管理中心,「0917關山地震、0918池上地震地質調查報告」,2022。
    64. 地質調查及礦業管理中心,「花蓮地震地質調查報告」,2024。
    65. 地質調查及礦業管理中心,「山崩分類表」,2024。
    66. 地質調查及礦業管理中心,「地形圖資及影像資料」,2024。
    67. 吳俊鋐,陳樹群,「崩塌潛勢預測方法於台灣適用性之初探」,水土保持學報,第36卷第4期,頁295-306,2004。
    68. 吳俊杰, 王成華, 李廣信,「非飽和土基質吸力對邊坡穩定的影響」,岩土力學,第25卷第5期,頁732-736,2004。
    69. 吳育豪,「考慮真實地震對三維邊坡穩定分析之研究-以萬山D048大規模崩塌潛勢區為例」,國立成功大學資源工程學系碩士論文,2023。
    70. 拱祥生,「不飽和紅土基質吸力行為及其在工程上之應用」,國立台灣科技大學營建工程系博士論文,2011。
    71. 高振誠,「台南市政府工務局110-112年度溪北山區市道地滑邊坡監測及預警系統建置服務工作-第一次半年監測成果報告」,青山工程顧問股份有限公司,2021。
    72. 高振誠,「台南市政府工務局110-112年度溪北山區市道地滑邊坡監測及預警系統建置服務工作-監測總成果報告」,青山工程顧問股份有限公司,2023。
    73. 張凱鈞,「考慮降雨入滲三維邊坡穩定分析之研究-以萬山D048大規模崩塌潛勢區為例」,國立成功大學資源工程學系碩士論文,2022。
    74. 陳志昌,「FLAC程式應用於土壤邊坡穩定分析」,國立中央大學應用地質研究所碩士論文,2001。
    75. 國土測繪中心,「地形圖資及影像資料」,2024。
    76. 黃獻廷, 葉信富, 柯建仲,「未飽和土壤單峰與雙峰水力特性對邊坡穩定性影響之研究」,農業工程學報,第67卷第3期,2021。
    77. 董英宏, 謝有忠, 林錫宏, 吳庭瑜,「0918池上地震之地震山崩勘查」,地質,第41卷第3-4期,頁50-53,2022。
    78. 農業部農村發展及水土保持署,「花蓮地震後崩塌判釋成果」,2024。
    79. 趙新杰,謝春慶,潘凱,李航,「強震作用下高填方邊坡變形與穩定性研究」,地球科學前沿,第11卷第3期,頁305-322,2021。
    80. 潘如蕙,「剪力強度折減法應用於層狀土壤邊坡之穩定性研究」,國立成功大學資源工程學系碩士論文,2007。
    81. 謝平城,王瀚衛,「降雨滲流對邊坡穩定的影響」,水土保持學報,第36卷第2期,頁135-142,2004。
    82. 鍾明劍, 譚志豪, 陳勉銘, 蘇泰維,「以定率法評估邊坡山崩臨界雨量:以南勢坑為例」,中華水土保持學報,第44卷第1期,頁 66-77,2013。

    無法下載圖示 校內:2029-08-06公開
    校外:2029-08-06公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE