簡易檢索 / 詳目顯示

研究生: 王盛一
Wang, Sheng-Yi
論文名稱: 探討高溫中利用不同電解質電沉積硒化鋅薄膜
Study of electrodeposition of ZnSe thin film by using various electrolytes in high temperature
指導教授: 黃守仁
Whang, Thou-Jen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 90
中文關鍵詞: 硒化鋅電解質電沉積溫度擴散係數
外文關鍵詞: Zinc Selenide, Electrolyte, Temperature, Diffsion Coefficient
相關次數: 點閱:54下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究在不同電解質及溫度上利用電沉積法製作硒化鋅薄膜。不同電解質的擴散係數經由Fick’s law計算所得到,擴散係數在電沉積硒化鋅薄膜時會影響實驗的電流密度、膜的厚度、粒徑大小。硒化鋅薄膜在光吸收性質上由於粒徑大小不同會有量子侷限效應發生造成有穿透度紅移的現象,這也造成我們利用Tauc-Sunds公式所計算出的能隙值也有紅移現象。
    另一方面,隨著溫度提高在循環伏安圖上看到會有還原電位提前發生,在電化學反應機制上也有所不同,反應進行的方向不同造成硒化鋅薄膜的元素比例是有差異的。從結果觀察到製作硒化鋅薄膜在80℃時的結晶性會優於45℃以及65℃,在能隙值、晶格常數方面在80℃時也較接近理論值。這趨勢對於製作太陽能電池p-n junction方面可以減少載子重合的機率發生。

    This study discussed with fabrication of zinc selenide by using eletrodeposition at various electrolytes and temperature. The diffusion coefficient of electrolytes was calculated by Fick’s law and it woule affect the current density, thickness and particle size. The films of zinc selenide had quantum confinement effect and red shift of transmittance due to the particle size, and it caused the band gap that we calculated by Tauc-Sunds equation had red shift as well.
    On the other side, the reduction potential shifted more positive when the temperature raised, it also make different electrochemical reations occurred, the different reaction led the films to different proportion of element. We observed the fabrication of zinc selenide in eighty Celsius degree its crystallinity had more intense than forty-five and sixty-five Celsius degree, the value of band gap and lattice constant were more closer to theoretical value in eighty Celsius degree as well. This trend may reduce the carrier recombination to fabricate the solar cells p-n junction.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 半導體的簡介 1 1.2.1 半導體的能帶 2 1.2.2 半導體的載子結合 4 1.2.3 硒化鋅(ZnSe)半導體薄膜簡介 6 1.2.4 晶格結構 7 第二章 實驗研究之動機與原理 9 2.1 太陽能電池簡介 9 2.1.1 太陽能電池種類 9 2.1.2 太陽能電池工作原理 10 2.1.3 太陽光的頻譜照度 11 2.2 電化學原理 13 2.2.1 循環伏安法(Cyclic Voltammetry) 14 2.2.2 定電位電解法(Chronoamperometry) 14 2.2.3 定電流電解法(Chronopotentiometry) 15 2.2.4 計時電流法(Chronoamperometry) 15 2.2.5 旋轉電極法(Rotating Disk Electrode Method) 15 2.2.6 塔弗方程式(Tafel Equation) 16 2.3 半導體薄膜製備方式 22 2.3.1化學氣相沉積法 (Chemical Vapor Deposition, CVD) 22 2.3.2濺鍍法 (Sputtering) 23 2.3.3化學浴沉積法 (Chemical Bath Deposition, CBD) 23 2.3.4原子層磊晶法 (Atomic Layer Epitaxy, ALE) 24 2.3.5電化學沉積法 (Electrochemical Deposition, ED) 25 第三章 實驗部份 27 3.1 實驗操作 27 3.1.1 基板的處理程序 27 3.1.2 電沉積硒化鋅薄膜 27 3.2 藥品與器材 27 3.2.1 電極系統 28 3.3 儀器 29 3.3.1 X光粉末繞射儀(X-ray Powder Diffactometer) 29 3.3.2 掃描式電子顯微鏡 (Scanning Electron Microscope) 31 3.3.3 能量分散式光譜儀(Energy Dispersive Spectrometer) 32 3.3.4 紫外光/可見光/近紅外線光譜儀 (UV–VIS-NIR Spectrophotometry ) 32 第四章 結果與討論 34 4.1 循環伏安圖(Cyclic Voltammetry) 34 4.1.1 硫酸根離子系統(Sulfate Ion System) 34 4.1.2 硝酸根離子系統(Nitrate Ion System) 38 4.1.3 氯離子系統(Chloride Ion System) 42 4.2 形成硒化鋅的電化學機制探討 45 4.2.1 低電位沉積(Underpotential Deposition) 45 4.2.2 擴散係數(Diffusion Coefficient) 46 4.3 電沉積硒化鋅薄膜(45℃) 49 4.3.1 不同沉積電位的影響 49 4.3.2 測量UV-VIS-NIR以及能隙的計算 53 4.4 電沉積硒化鋅薄膜(65℃) 57 4.4.1 不同沉積電位的影響 57 4.4.2 不同沉積時間對硒化鋅結晶性的影響 60 4.4.3 測量UV-VIS-NIR以及能隙的計算 63 4.5 電沉積硒化鋅薄膜(80℃) 67 4.5.1 不同沉積電位的影響 67 4.5.2 測量UV-VIS-NIR以及能隙的計算 70 4.5.3 鋅離子濃度的影響 73 4.6 溫度對ZnSe(1 1 1)結晶面的影響 75 4.7 溫度對ZnSe能隙的影響 76 4.8 溫度對ZnSe薄膜形貌及晶格常數的影響 78 第五章 結論 81 參考文獻 83 附錄 87

    1. C. D. M. Munzel, V. Dyakonov, J. Parisi, W. Riedlb, F. Karg, Electrical characterization of defects in Cu In,Ga Se solar cells containing a ZnSe or a CdS buffer layer, Thin Solid Films, 2001, 387, 231.
    2. T. Kosanovic, M. Bouroushian, N. Spyrellis, Soft growth of the ZnSe compound from alkaline selenosulfite solutions, Materials Chemistry and Physics, 2005. 90(1), 148.
    3. A. Kathalingam, T. Mahalingam, C. Sanjeeviraja, Optical and structural study of electrodeposited zinc selenide thin films. Materials Chemistry and Physics, 2007, 106(2-3), 215.
    4. G. Riveros, H. Gomes, R. Henrı́quez, R. Schrebler, R. E. Marotti, E. A. Dalchiele, Electrodeposition and characterization of ZnSe semiconductor thin films. Solar Energy Materials and Solar Cells, 2001, 70, 255.
    5. I. M. Dharmadasa, A. P. Samantilleke, J. Young, M. H. Boyle, R. Bacewicz, A. Wolska, Electrodeposited p-type and n-type ZnSe layers for light emitting devices and multi-layer tandem solar cells, Journal of Materials Science: Materials in Electronics, 1999, 10, 441.
    6. M. I. R. Kumaresan, E. Arai., Photochemical deposition of ZnSe polycrystalline thin films and their characterization. Thin Solid Films, 2002, 414, 25.
    7. A. Toru, T. Ikeda, D. Korzecb, Y. Hatanaka, ZnSe growth by radical assisted MOCVD using hollow cathode plasma. Thin Solid Films, 2000, 368, 244.
    8. M. A. Martinez, A. M. Chaparro, C. Gullien, R. Bayon, M. T. Gutierrez, J. Herrero, SnO2 substrate effects on the morphology and composition of chemical bath deposited ZnSe thin films. Thin Solid Films, 2000, 361-362, 177.
    9. D. Gal, G. Hodes, Electrochemical Deposition of ZnSe and (Zn,Cd)Se Films from Nonaqueous Solutions, Journal of The Electrochemical Society, 2000, 147, 1825.
    10. S. Sanchez, C. Lucas, G. S. Picard, M. R. Bermejo, Y. Castrillejo, Molten salt route for ZnSe high-temperature electrosynthesis, Thin Solid Films, 2000, 361–362, 107.
    11. K. Singh, J. P. Rai, Electrosynthesis and photoelectroactivity of polycrystalline p-zinc selenide, Physica Status Solidi (a),1987, 99, 257.
    12. D. Lincot, Electrodeposition of semiconductors, Thin Solid Films, 2005, 487, 40.
    13. M. Bouroushian, T. Kosanovic, Z. Loizos, N. Spyrellis, Electrochemical formation of zinc selenide fron aqueous solutions, Journal of Solid State Electrochemistry, 2002, 6, 272.
    14. M. Akazawa, N. Shiozaki, H. Hasegawa, Precisely controlled anodic etching for processing of GaAs-based quantum nanostructures and devices, Journal De Physique, 2006, 132, 249.
    15. JL. Stickney, M. Muthuvel, CdTe Electrodeposition on InP(100) via Electrochemical Atomic Layer Epitaxy (EC-ALE): Studies Using UHV-EC, Langmuir, 2006, 22, 5504.
    16. F. Loglio, M. Innocenti, F. D'Acapito, R. Felici, G. Pezzatini, E. Salvietti, M. L. Foresti, Cadmium selenide electrodeposited by ECALE: electrochemical characterization and preliminary results by EXAFS, Journal of Electroanalytical Chemistry, 2005, 575(1), 161.
    17. R. S. Muller, T. I. Kamins, Device Electronics for Integrated Circuits 2d, 1989, New York.
    18. T. Jim, The Essential Guide to Semiconductors, Prentice Hall PTR, 2002.
    19. C. S. Ling, The Time-resolved Photoluminescence study of Zn1-xCdxSe epilayer and ZnSe /Zn0.91Cd0.09SeMQW, National Sun Yat sen University, Taiwan, 2003.
    20. S. T. Lakshmikumar, A. C. Rastogi, Novel two-stage selenization process for the preparation of ZnSe films, Thin Solid Films, 1995, 259, 150.
    21. A. Carbone, P. Mazzetti, Noise gain in single quantum well infrared photodetectors, Applied Physics Letters, 1997, 70(17), 28.
    22. C. Wang, W. X. Zhang, X. F. Qian, X. M. Zhang, Y. Xie, Y. T. Qian, An aqueous approach to ZnSe and CdSe semiconductor nanocrystals, Materials Chemistry and Physics,1999, 60, 99.
    23. A. Rizzo, M. A. Tagliente, L. Caneve, S. Scaglione, The influence of the momentum transfer on the structural and optical properties of ZnSe thin films prepared by r.f. magnetron sputtering, Thin Solid Films, 2000, 368, 8.
    24. L. Vanzetti, A. Bonanni, G. Bratina, L. Sorba, A. Franciosi, M. Lomascolo, D. Greco, R. Cingolani, Influence of growth parameters on the properties of ZnSe-GaAs( 001) heterostructures, Journal of Crystal Growth, 1995, 150, 765.
    25. S. T. Lakshmikumar, A. C. Rastogi, Optical and mechanical properties of carbon nitride films prepared by ion-assisted arc deposition and magnetron sputtering, Thin Solid Films, 1995, 256, 150.
    26. G.. Shen, D. chen, K. Tang, Y. Qian, Characterization of ZnSe spheres via a rapid polyol process, Journal of Crystal Growth, 2003, 257, 276.
    27. T. Dittrichn, A. Belaidi, A. Ennaoui, Concepts of inorganic solid-state nanostructured solar cells, Solar Energy Materials and Solar Cells, 2011, 95, 1527.
    28. R. P. Raffaelle, H. Forsell, T. Potdevin, R. Friedfeld, J. G. Mantovani, S. G. Bailey, S. M. Hubbard, E. M. Gordon, A. F. Hepp, Electrodeposited CdS on CIS pn junctions, Solar Energy Materials and Solar Cells, 1999, 57, 167.
    29. http://en.wikipedia.org/wiki/Theory_of_solar_cells
    30. 曾衍彰, " 太陽能電池原理與材料技術",經濟部工業局,2004, 63.
    31. V. R. Koch, C. N Anjundiah, R. T. Carline, World Pat., 1997.
    32. J. S. Wilkes, A short history of ionic liquids—from molten salts to neoteric solvents, Green Chemistry, 2002, 4, 73.
    33. D. R. Macfarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, Pyrrolidinium Imides: A New Family of Molten Salts and Conductive Plastic Crystal Phases, Journal of Physical Chemistry B, 1999, 103, 4164.
    34. J. Koryta, J. Dvorak, L. Kavan, Principles of electrochemistry, second edition, John Wiley, New York, 1993.
    35. A. J. Bard, Electrochemical Methods: fundamentals and applications, John Wiley, New York, 1995, 184.
    36. H. C. Yang, 硫氧化物及聚吩衍生物在金、鉑電極上之研究, National Central University, Taiwan, 2003.
    37. A. J. Bard, L. R. Faulkner, Electrochemical Methods, John Wiley, 1980.
    38. A. Rumberg, Ch. Sommerhalter, M. Toplak, A. Jager-Waldau, M. Ch. Lux-Steiner, ZnSe thin films grown by chemical vapour deposition for application as buffer layer in CIGSS solar cells, Thin Solid Films, 2000, 361-362, 172.
    39. http://www.memsnet.org/mems/processes/deposition.html
    40. C. Wang, X. F. Qian, W. X. Zhang, X. M. Zhang, Y. Xie, Y. T. Qian, Preparation of ZnSe films through chemical solution reduction process, Materials Research Bulletin, 1999, 34, 1637.
    41. http://www.tf.uni-kiel.de/matwis/amat/elmat_en/kap_6/backbone/r6_4_1.html
    42. http://www.ece.utep.edu/research/webedl/cdte/Fabrication/pictures/chem.htm
    43. A. Saynatjoki, Atomic-layer-deposited thin films for silicon nanophotonics, Newsroom, SPIE, 2012.
    44. K. Singh, J. P. Rai, Electrosynthesis of polycrystalline photoelectroactive p- zinc selenide, Journal of Materials Science Letters, 1985, 1401–1402, 4.
    45. B. D. Cullity, Elements of X-ray Diffraction, Addition-Wesley, Massachusetts, 1956.
    46. A. Kampmann, V. Sittinger, J. Rechid, R. Reineke-Koch, Large area electrodeposition of Cu(In,Ga)Se2, Thin Solid Films, 2000, 361-362, 309.
    47. R. K. Naglaa Fathy, M.Ichimura, Preparation of ZnS thin films by the pulsed electrochemical deposition, Materials Science and Engineering B, 2004, 107, 271.
    48. W. J. Liu, O. T. C. Chen, L. K. Dai, P. K. Weng, K.H. Huang F. W. Jih, A CMOS Photodiode Model, IEEE International Workshop on Behavioral Modeling and Simulation, 2001.
    49. H.R. Dobler, Infrared coatings, Applied optics, 1989, 28, 2698.
    50. E. B. Chubenko , A. A. Klyshko, V. A. Petrovich, V. P. Bondarenko, Electrochemical deposition of zinc selenide and cadmium selenide onto porous silicon from aqueous acidic solutions, Thin Solid Films, 2009, 517, 5981.
    51. K. Daniel, Schwartz, Langmuir-Blodgett film structure, Surface Science, 1997, 27, 241.
    52. Z. Loizos, N. Spyrellis, G. Maurin, D. Pottier, Semiconducting CdSexTe1−x thin films prepared by electrodeposition, Journal of Electroanalytical Chemistry, 1989, 269, 399.
    53. R. C. West, Handbook of Chemistry and Physics, 64th Edition, CRC Press, Florida, USA, 1985.
    54. C. Natarajan, M. Sharon, C. Levy-Clement, M. Neumann-Spallart, Electrodeposition of zinc selenide, Thin Solid Films, 1994, 237, 118.
    55. M. Bouroushian, J. Charoud-Got, Z. Loizos, N. Spyrellis, A phase modification of CdSe electrodeposits induced by substrate roughness, Journal of Materials Science Letters, 2000, 19, 2201.
    56. Southampton Electrochemistry Group, Instrumental Methods in Electrochemistry, Ellis Horwood, Chichester, UK, 1985.
    57. V. Dhanasekaran, T. Mahalingam, J. K. Rhee, J. P. Chu, Structural and optical properties of electrosynthesized ZnSe thin films, Optik, 2012, 6.
    58. P. P. Hankare, V. M. Bhuse, K. M. Garadkar, A. D. Jadhav, A novel method to grow polycrystalline HgSe thin film, Materials Chemistry and Physics, 2001, 71, 53.
    59. K. L. Chopra, Thin film solar cells, Plenum, New York, 1983.
    60. A. Roine, Outokumpu HSC chemistry for windows, Pori, Finland: Outokumpu, 1997.

    下載圖示 校內:2018-07-29公開
    校外:2018-07-29公開
    QR CODE