簡易檢索 / 詳目顯示

研究生: 謝靜宜
Hsieh, Ching-Yi
論文名稱: 運用奈米策略發展DNA奈米立體結構達抗菌效果
Development of three-dimensional DNA nanostructure for anti-bacteria strategy
指導教授: 謝達斌
Shieh, Dar-Bin
共同指導教授: 吳尚蓉
Wu, Shang-Rung
學位類別: 碩士
Master
系所名稱: 醫學院 - 口腔醫學研究所
Institute of Oral Medicine
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 62
中文關鍵詞: 冷凍電子顯微鏡DNA摺紙技術藥物輸送系統適體細菌感染
外文關鍵詞: Cryo-electron microscopy, DNA origami, drug delivery system, aptamer, bacterial infection
相關次數: 點閱:119下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米生醫為基礎的診療體系之發展已逐漸走向臨床實用為目標。近期研究指出,特定之無機奈米材料對細胞會產生毒性及生物功能障礙等影響。而DNA奈米立體結構為細胞本身俱有之巨分子,因此基本上被認為能發展為具低生物毒性、高生物相容性的奈米載體。
    本研究以DNA構成的奈米立體結構為平台,發展一個利用鹼基互補特性自行組合而成的DNA奈米立體結構,外露一段具有標靶能力的DNA適體。我們透過抗菌分子放線菌素D (Actinomycin D, AMD) 會與DNA次凹槽交互作用形成氫鍵而結合的特性,將放線菌素D嵌入DNA奈米立體結構雙股支架裡,達到乘載藥物的目的,並能藉由DNA適體的專一性標靶目標物而達到標靶性釋放藥物的抗菌能力。目前我已經將DNA奈米立體結構組裝完成,並運用DNA洋菜膠體電泳進行確認。我更進一步利用冷凍電鏡及三維結構重組技術分析此DNA奈米立體結構,發現其為空心的球體。接著,我們發現DNA奈米立體結構達到飽和時能攜帶2409.47個放線菌素D。我們也發現DNA奈米立體結構與其攜帶之相同濃度的自由態抗生素具有更強的抗菌效果。在適體結合能力測試中,我們證實適體能專一性的與突變型鏈球菌結合。

    The rapid development of nanomedicine based on theranostic has gradually evolved into practical clinical applications. Recently, researchers have reported that certain inorganic nanomaterial may induce cytotoxicity and biological dysfunction. DNA is an intrinsic biological macromolecule thus their nanostructures were regarded as excellent carriers with low toxicity and high biocompatibility.
    In my study, I would like to develop an advanced theranostic platform based on a self-assembled DNA nanostructure as scaffold with targeting aptamer and carrying antibiotics. Antimicrobial molecules (Actinomycin D, AMD) will be attached to minor groove of DNA double helix through hydrogen bond. The DNA nanostructure system serves as carriers for targeting delivery of AMD to attack bacteria. Currently, the DNA nanostructure system has been assembled and was confirmed by DNA agarose gel electrophoresis. Cryo-electron microscopy (cryo-EM) and three-dimensional (3D) reconstruction technique showed the DNA nanostructure system was a hollow spherical structure. In addition, we found a single DNA nanostructure could carry 2409.47 AMD molecules when saturated. We further found that the anti-bacteria ability of our system had a higher efficacy than free AMD. In the aptamer binding assays, we demonstrated the aptamer target specifically to Streptococcus mutans.

    中文摘要 ii Abstract iv Acknowledgement vi Table of Contents vii Figures List xi Tables List xii Abbreviations xiii 1. Introduction 1 1.1 Nanotechnology 1 1.1.1 The rapid advancement of DNA based nanomedicine 2 1.1.2 DNA origami 3 1.1.3 DNA nanostructures in drug delivery system 4 1.2 Advanced delivery concept for drugs and functional molecules 5 1.2.1 Aptamers in drug delivery system 5 1.3 An emerging trend of transmission electron microscopy (TEM) in nanotechnology 6 1.3.1 Innovation in technique for Cryo-electron (Cryo-EM) 6 1.3.2 Images analysis using single particle reconstruction approach in EMAN2 7 1.4 Bacterial infection in the gastrointestinal system 8 1.4.1 Antibiotics for the treatment in bacterial infection 8 1.4.2 Dental caries 9 1.5 Rationale 10 2. Materials and Methods 11 2.1 Oligonucleotides 11 2.2 Synthesis of the DNA nanostructure 12 2.3 Characterization of the DNA nanostructure 12 2.3.1 Gel electrophoreses analyze the formation of DNA nanostructure 12 2.3.2 Transmission electron microscopy observation of the native and actinomycin d carrying DNA nanostructure (AMD/DNA nanostructure) 13 2.4 Cryo-electron microscopy (Cryo-EM) 14 2.5 Three-dimensional reconstruction of the DNA nanostructure using EMAN2 software package 14 2.6 Drug loading content analysis 15 2.7 Bacteria strains and media 15 2.8 Minimum inhibitory concentration (MIC) 16 2.9 Minimum bactericidal concentration (MBC) 17 2.10 Aptamer binding assays 17 2.11 DNA nanostructures binding assays 18 3. Results 19 3.1 Scheme of DNA and AMD/DNA nanostructure 19 3.2 Characteristics of DNA and AMD/DNA nanostructure 19 3.3 Three-dimensional reconstruction of DNA nanostructure 20 3.4 Actinomycin D loading capacity 21 3.5 Minimum inhibitory concentration (MIC) of Actinomycin D against oral Streptococcus bacteria 22 3.6 Minimum bactericidal concentration (MBC) of Actinomycin D against oral Streptococcus bacteria 22 3.7 The efficacy of AMD/DNA nanostructure as a drug delivery system 23 3.8 In aptamer-binding assays 23 3.9 In aptamer-binding assay for the DNA nanostructure with aptamers 24 4. Discussion 25 5. Conclusion 30 6. References 32 7. Figures and Legends 39 8. Table 62

    Bagalkot, V., Farokhzad, O.C., Langer, R., and Jon, S. (2006). An Aptamer–Doxorubicin Physical Conjugate as a Novel Targeted Drug-Delivery Platform. Angewandte Chemie International Edition 45, 8149-8152.
    Becker, M.R., Paster, B.J., Leys, E.J., Moeschberger, M.L., Kenyon, S.G., Galvin, J.L., Boches, S.K., Dewhirst, F.E., and Griffen, A.L. (2002). Molecular Analysis of Bacterial Species Associated with Childhood Caries. Journal of Clinical Microbiology 40, 1001-1009.
    Bhatia, D., Chakraborty, S., Mehtab, S., and Krishnan, Y. (2013). A Method to Encapsulate Molecular Cargo Within DNA Icosahedra. In Cellular and Subcellular Nanotechnology, V. Weissig, T. Elbayoumi, and M. Olsen, eds. (Humana Press), pp. 65-80.
    Bhatia, D., Surana, S., Chakraborty, S., Koushika, S.P., and Krishnan, Y. (2011). A synthetic icosahedral DNA-based host–cargo complex for functional in vivo imaging. Nat Commun 2, 339.
    Brannon-Peppas, L., and Blanchette, J.O. (2012). Nanoparticle and targeted systems for cancer therapy. Advanced Drug Delivery Reviews 64, Supplement, 206-212.
    Chang, M., Yang, C.-S., and Huang, D.-M. (2011). Aptamer-Conjugated DNA Icosahedral Nanoparticles As a Carrier of Doxorubicin for Cancer Therapy. ACS Nano 5, 6156-6163.
    Chari, R.V.J. (1998). Targeted delivery of chemotherapeutics: tumor-activated prodrug therapy. Advanced Drug Delivery Reviews 31, 89-104.
    Charoenphol, P., and Bermudez, H. (2014). Aptamer-Targeted DNA Nanostructures for Therapeutic Delivery. Molecular Pharmaceutics 11, 1721-1725.
    Cheng, X., Zhang, F., Zhou, G., Gao, S., Dong, L., Jiang, W., Ding, Z., Chen, J., and Zhang, J. (2009). DNA/chitosan nanocomplex as a novel drug carrier for doxorubicin. Drug Delivery 16, 135-144.
    Chou, S.-W., Shau, Y.-H., Wu, P.-C., Yang, Y.-S., Shieh, D.-B., and Chen, C.-C. (2010). In Vitro and in Vivo Studies of FePt Nanoparticles for Dual Modal CT/MRI Molecular Imaging. Journal of the American Chemical Society 132, 13270-13278.
    Crawford, R., Erben, C.M., Periz, J., Hall, L.M., Brown, T., Turberfield, A.J., and Kapanidis, A.N. (2013). Non-covalent Single Transcription Factor Encapsulation Inside a DNA Cage. Angewandte Chemie International Edition 52, 2284-2288.
    De Carlo, S., and Harris, J.R. (2011). Negative staining and Cryo-negative Staining of Macromolecules and Viruses for TEM. Micron (Oxford, England : 1993) 42, 117-131.
    Douglas, S.M., Marblestone, A.H., Teerapittayanon, S., Vazquez, A., Church, G.M., and Shih, W.M. (2009). Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37, 5001-5006.
    Dubochet, J., Adrian, M., Chang, J.-J., Homo, J.-C., Lepault, J., McDowall, A.W., and Schultz, P. (1988). Cryo-electron microscopy of vitrified specimens. Quarterly Reviews of Biophysics 21, 129-228.
    Fuller, R. (1991). Probiotics in human medicine. Gut 32, 439-442.
    Geierstanger, B.H., and Wemmer, D.E. (1995). Complexes of the Minor Groove of DNA. Annual Review of Biophysics and Biomolecular Structure 24, 463-493.
    Goodman, R.P., Heilemann, M., Doose, S., Erben, C.M., Kapanidis, A.N., and Turberfield, A.J. (2008). Reconfigurable, braced, three-dimensional DNA nanostructures. Nat Nano 3, 93-96.
    Goodman, R.P., Schaap, I.A.T., Tardin, C.F., Erben, C.M., Berry, R.M., Schmidt, C.F., and Turberfield, A.J. (2005). Rapid Chiral Assembly of Rigid DNA Building Blocks for Molecular Nanofabrication. Science 310, 1661-1665.
    Guarner, F., and Malagelada, J.-R. (2003). Gut flora in health and disease. The Lancet 361, 512-519.
    Hamblin, G.D., Carneiro, K.M.M., Fakhoury, J.F., Bujold, K.E., and Sleiman, H.F. (2012). Rolling Circle Amplification-Templated DNA Nanotubes Show Increased Stability and Cell Penetration Ability. Journal of the American Chemical Society 134, 2888-2891.
    He, Y., Su, M., Fang, P.-a., Zhang, C., Ribbe, A.E., Jiang, W., and Mao, C. (2010). On the Chirality of Self-Assembled DNA Octahedra. Angewandte Chemie International Edition 49, 748-751.
    He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W., and Mao, C. (2008). Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198-201.
    Hollstein, U. (1974). Actinomycin. Chemistry and mechanism of action. Chemical Reviews 74, 625-652.
    Kamitori, S., and Takusagawa, F. (1994). Multiple Binding Modes of Anticancer Drug Actinomycin D: X-ray, Molecular Modeling, and Spectroscopic Studies of d(GAAGCTTC)2-Actinomycin D Complexes and Its Host DNA. Journal of the American Chemical Society 116, 4154-4165.
    Kato, T., Goodman, R.P., Erben, C.M., Turberfield, A.J., and Namba, K. (2009). High-Resolution Structural Analysis of a DNA Nanostructure by cryoEM. Nano Letters 9, 2747-2750.
    Khutsishvili, I., Johnson, S., Reiling, C., Prislan, I., Lee, H.-T., and Marky, L. (2014). Interaction of DNA Intramolecular Structures with Their Complementary Strands: A Thermodynamic Approach for the Control of Gene Expression. In Chemical Biology of Nucleic Acids, V.A. Erdmann, W.T. Markiewicz, and J. Barciszewski, eds. (Springer Berlin Heidelberg), pp. 367-383.
    Ko, S.-H., Liu, H., Chen, Y., and Mao, C. (2008). DNA Nanotubes (DNA-NTs) as Combinatorial Vehicles for Cellular Delivery. Biomacromolecules 9, 3039-3043.
    Kuramitsu, H.K. (1993). Virulence Factors of Mutans Streptococci: Role of Molecular Genetics. Critical Reviews in Oral Biology & Medicine 4, 159-176.
    Landsberg, H. (1949). Prelude to the Discovery of Penicillin. Isis 40, 225-227.
    Lee, H., Lytton-Jean, A.K.R., Chen, Y., Love, K.T., Park, A.I., Karagiannis, E.D., Sehgal, A., Querbes, W., Zurenko, C.S., Jayaraman, M., et al. (2012). Molecularly Self-Assembled Nucleic Acid Nanoparticles for Targeted In Vivo siRNA Delivery. Nature nanotechnology 7, 389-393.
    Lennon, A.M., Buchalla, W., Brune, L., Zimmermann, O., Gross, U., and Attin, T. (2006). The Ability of Selected Oral Microorganisms to Emit Red Fluorescence. Caries Research 40, 2-5.
    Li, J., Pei, H., Zhu, B., Liang, L., Wei, M., He, Y., Chen, N., Li, D., Huang, Q., and Fan, C. (2011). Self-Assembled Multivalent DNA Nanostructures for Noninvasive Intracellular Delivery of Immunostimulatory CpG Oligonucleotides. ACS Nano 5, 8783-8789.
    Liu, X., Xu, Y., Yu, T., Clifford, C., Liu, Y., Yan, H., and Chang, Y. (2012). A DNA Nanostructure Platform for Directed Assembly of Synthetic Vaccines. Nano Letters 12, 4254-4259.
    Liu, Z., Tian, C., Yu, J., Li, Y., Jiang, W., and Mao, C. (2015). Self-Assembly of Responsive Multilayered DNA Nanocages. Journal of the American Chemical Society 137, 1730-1733.
    Ludtke, S.J., Jakana, J., Song, J.L., Chuang, D.T., and Chiu, W. (2001). A 11.5 A single particle reconstruction of GroEL using EMAN. J Mol Biol 314, 253-262.
    Ma, R.I., Kallenbach, N.R., Sheardy, R.D., Petrillo, M.L., and Seeman, N.C. (1986). Three-arm nucleic acid junctions are flexible. Nucleic Acids Research 14, 9745-9753.
    Monici, M. (2005). Cell and tissue autofluorescence research and diagnostic applications. In Biotechnology Annual Review, M.R. El-Gewely, ed. (Elsevier), pp. 227-256.
    Moyes, R.B., Reynolds, J., and Breakwell, D.P. (2005). Preliminary Staining of Bacteria: Negative Stain. In Current Protocols in Microbiology (John Wiley & Sons, Inc.).
    Nikaido, H. (2009). Multidrug Resistance in Bacteria. Annual review of biochemistry 78, 119-146.
    Pei, H., Zuo, X., Zhu, D., Huang, Q., and Fan, C. (2014). Functional DNA Nanostructures for Theranostic Applications. Accounts of Chemical Research 47, 550-559.
    Rothemund, P.W.K., Papadakis, N., and Winfree, E. (2004). Algorithmic Self-Assembly of DNA Sierpinski Triangles. PLoS Biology 2, e424.
    Savory, N., Takahashi, Y., Tsukakoshi, K., Hasegawa, H., Takase, M., Abe, K., Yoshida, W., Ferri, S., Kumazawa, S., Sode, K., et al. (2014). Simultaneous improvement of specificity and affinity of aptamers against Streptococcus mutans by in silico maturation for biosensor development. Biotechnology and Bioengineering 111, 454-461.
    Seeman, N.C., and Kallenbach, N.R. (1983). Design of immobile nucleic acid junctions. Biophysical Journal 44, 201-209.
    Selwitz, R.H., Ismail, A.I., and Pitts, N.B. Dental caries. The Lancet 369, 51-59.
    Setyawati, M.I., Kutty, R.V., Tay, C.Y., Yuan, X., Xie, J., and Leong, D.T. (2014). Novel Theranostic DNA Nanoscaffolds for the Simultaneous Detection and Killing of Escherichia coli and Staphylococcus aureus. ACS Applied Materials & Interfaces 6, 21822-21831.
    Sobell, H.M. (1985). Actinomycin and DNA transcription. Proceedings of the National Academy of Sciences of the United States of America 82, 5328-5331.
    Tang, G., Peng, L., Baldwin, P.R., Mann, D.S., Jiang, W., Rees, I., and Ludtke, S.J. (2007). EMAN2: An extensible image processing suite for electron microscopy. Journal of Structural Biology 157, 38-46.
    Tombelli, S., Minunni, M., and Mascini, M. (2005). Analytical applications of aptamers. Biosensors and Bioelectronics 20, 2424-2434.
    Tuerk, C., and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510.
    Wagner, V., Dullaart, A., Bock, A.-K., and Zweck, A. (2006). The emerging nanomedicine landscape. Nat Biotech 24, 1211-1217.
    Wang, S.-Y., Lee, Y.-L., Lai, Y.-H., Chen, J.J.W., Wu, W.-L., Yuann, J.-M.P., Su, W.-L., Chuang, S.-M., and Hou, M.-H. (2012). Spermine Attenuates the Action of the DNA Intercalator, Actinomycin D, on DNA Binding and the Inhibition of Transcription and DNA Replication. PLoS ONE 7, e47101.
    Xiong, M.-H., Bao, Y., Yang, X.-Z., Zhu, Y.-H., and Wang, J. (2014). Delivery of antibiotics with polymeric particles. Advanced Drug Delivery Reviews 78, 63-76.
    Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., and LaBean, T.H. (2003). DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301, 1882-1884.
    Zhang, C., Ko, S.H., Su, M., Leng, Y., Ribbe, A.E., Jiang, W., and Mao, C. (2009). Symmetry Controls the Face Geometry of DNA Polyhedra. Journal of the American Chemical Society 131, 1413-1415.
    Zhang, C., Li, X., Tian, C., Yu, G., Li, Y., Jiang, W., and Mao, C. (2014). DNA Nanocages Swallow Gold Nanoparticles (AuNPs) to Form AuNP@DNA Cage Core–Shell Structures. ACS Nano 8, 1130-1135.
    Zhang, C., Su, M., He, Y., Zhao, X., Fang, P.-a., Ribbe, A.E., Jiang, W., and Mao, C. (2008). Conformational flexibility facilitates self-assembly of complex DNA nanostructures. Proceedings of the National Academy of Sciences of the United States of America 105, 10665-10669.
    Zhang, X., Sheng, J., Plevka, P., Kuhn, R.J., Diamond, M.S., and Rossmann, M.G. (2013). Dengue structure differs at the temperatures of its human and mosquito hosts. Proceedings of the National Academy of Sciences 110, 6795-6799.
    Zhao, Y.-X., Shaw, A., Zeng, X., Benson, E., Nyström, A.M., and Högberg, B. (2012). DNA Origami Delivery System for Cancer Therapy with Tunable Release Properties. ACS Nano 6, 8684-8691.

    無法下載圖示 校內:2025-12-31公開
    校外:2025-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE