| 研究生: |
鄭清松 Trinh, Tung |
|---|---|
| 論文名稱: |
光照法製備熱可調式液晶彈性體的研究 Study on Thermal Tunable Liquid Crystal Elastomers Based on Photo Patterning Technique |
| 指導教授: |
劉瑞祥
Liu, Jui-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 液晶彈性體 、光聚合 、熱敏性液晶彈性體 、可逆致動器 |
| 外文關鍵詞: | liquid crystal elastomers, photopolymerization, thermal-sensitive liquid crystal elastomers, reversible actuators |
| 相關次數: | 點閱:93 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於液晶彈性體具有液晶排列的次序性與聚合物網狀結構的彈性性質,因此具有獨特的性質。為了製備熱驅動性液晶彈性體,本研究使用偶氮苯單體(Azo Fulen)、合成的寡聚物和交聯劑(BAHB)來進行光聚合。並使用差示掃描量熱法(DSC)及偏光顯微鏡(POM),找出液晶混合物的相轉移溫度。藉由紫外-可見分光光度法,測量材料的吸收光譜。在熱刺激下,液晶彈性體能多次的表現出可逆的驅動。這種現象歸因於熱酯交換和紫外光誘導的聚合,進而導致液晶彈性體有序參數S(order parameters)的記憶。研究結果顯示,合成的液晶彈性體膜能夠有效地將熱能轉換成機械動力。這個初步設計的熱敏性薄膜,期待在智能微型機器人系統中顯現出多樣實際應用的潛力。
The liquid crystal elastomers have unique properties because of combining liquid crystal orientational order with the elastic properties of a polymer network. To fabricate a thermal-responsive liquid crystal elastomer film, photo-polymerization of monomeric Azo Fulen, synthesized oligomer, and crosslinker BAHB was carried out. The transition temperatures of liquid crystal mixtures were confirmed using DSC and POM. The absorption spectra was measured using UV-Vis spectrometry. Under thermal stimulation, the polymerized liquid crystal elastomers show reversible actuation upon many cycles. This phenomenon is ascribed to thermal transesterification and UV induced polymerization lead to the memory of order parameters of LCEs. The results indicate that the synthesized liquid crystal elastomer film can effectively transfer thermal energy to mechanical power. The predesigned thermal-sensitive films are expected to show a number of potential for practical application in micro-robotic system with smart features.
1. De Jeu, W.H., Liquid crystal elastomers: materials and applications. Vol. 250. 2012: Springer.
2. Reinitzer, F., Beiträge zur kenntniss des cholesterins. Monatshefte für Chemie/Chemical Monthly, 1888. 9(1): p. 421-441.
3. Chen, R.H., Liquid crystal displays: fundamental physics and technology. 2011: John Wiley & Sons.
4. Hogan, B., et al., 2D material liquid crystals for optoelectronics and photonics. Journal of Materials Chemistry C, 2017. 5(43): p. 11185-11195.
5. Shibaev, V., Liquid-crystalline polymers: Past, present, and future. Polymer Science Series A, 2009. 51(11-12): p. 1131.
6. Onsager, L., The effects of shape on the interaction of colloidal particles. Annals of the New York Academy of Sciences, 1949. 51(4): p. 627-659.
7. Dierking, I. and S. Al-Zangana, Lyotropic liquid crystal phases from anisotropic nanomaterials. Nanomaterials, 2017. 7(10): p. 305.
8. Kouwer, P.H., et al., Modeling of ND and NCol phase transitions in discotic side chain polymers by the extended McMillan theory. Journal of the American Chemical Society, 2001. 123(19): p. 4645-4646.
9. Huang, Y. and S. Gui, Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Advances, 2018. 8(13): p. 6978-6987.
10. Dumanli, A.G. and T. Savin, Recent advances in the biomimicry of structural colours. Chemical Society Reviews, 2016. 45(24): p. 6698-6724.
11. Mathews, M., et al., Thermally, photochemically and electrically switchable reflection colors from self-organized chiral bent-core liquid crystals. Journal of Materials Chemistry, 2011. 21(7): p. 2098-2103.
12. Andrzejewska, E., Free radical photopolymerization of multifunctional monomers, in Three-Dimensional Microfabrication Using Two-photon Polymerization. 2016, Elsevier. p. 62-81.
13. Natansohn, A. and P. Rochon, Photoinduced motions in azo-containing polymers. Chemical reviews, 2002. 102(11): p. 4139-4176.
14. Kawatsuki, N., E. Uchida, and T. Yamamoto, Photocontrol of birefringence and in‐plane molecular orientation in copolymer liquid crystal films with 4‐methoxyazobenzene and photo‐cross‐linkable side groups. Macromolecular Chemistry and Physics, 2003. 204(4): p. 584-590.
15. Kaufhold, W., H. Finkelmann, and H.R. Brand, Nematic elastomers, 1. Effect of the spacer length on the mechanical coupling between network anisotropy and nematic order. Die Makromolekulare Chemie: Macromolecular Chemistry and Physics, 1991. 192(11): p. 2555-2579.
16. Warner, M. and E.M. Terentjev, Liquid crystal elastomers. Vol. 120. 2007: Oxford university press.
17. de Gennes, P.-G., Un muscle artificiel semi-rapide. Comptes Rendus de l'Académie des Sciences-Series IIB-Mechanics-Physics-Chemistry-Astronomy, 1997. 324(5): p. 343-348.
18. De Gennes, P.G., M. Hébert, and R. Kant. Artificial muscles based on nematic gels. in Macromolecular Symposia. 1997. Wiley Online Library.
19. Saed, M.O., et al., Molecularly-Engineered, 4D-Printed Liquid Crystal Elastomer Actuators. Advanced Functional Materials, 2019. 29(3).
20. Yu, L., et al., Programmable 3D Shape Changes in Liquid Crystal Polymer Networks of Uniaxial Orientation. Advanced Functional Materials, 2018. 28(37): p. 8.
21. Yang, R. and Y. Zhao, Non-Uniform Optical Inscription of Actuation Domains in a Liquid Crystal Polymer of Uniaxial Orientation: An Approach to Complex and Programmable Shape Changes. Angewandte Chemie-International Edition, 2017. 56(45): p. 14202-14206.
22. Tian, H.M., et al., Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle. Acs Applied Materials & Interfaces, 2018. 10(9): p. 8307-8316.
23. Kohlmeyer, R.R. and J. Chen, Wavelength-Selective, IR Light-Driven Hinges Based on Liquid Crystalline Elastomer Composites. Angewandte Chemie-International Edition, 2013. 52(35): p. 9234-9237.
24. Yue, Y.F., et al., Light-induced mechanical response in crosslinked liquid-crystalline polymers with photoswitchable glass transition temperatures. Nature Communications, 2018. 9.
25. Yu, L., et al., Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites. Journal of Materials Chemistry C, 2014. 2(40): p. 8501-8506.
26. Wani, O.M., et al., An Artificial Nocturnal Flower via Humidity-Gated Photoactuation in Liquid Crystal Networks. Advanced Materials, 2019. 31(2).
27. Zhang, Y.S., A. Emelyanenko, and J.H. Liu, Fabrication and optical characterization of imprinted broad‐band photonic films via multiple gradient UV photopolymerization. Journal of Polymer Science Part B: Polymer Physics, 2017. 55(19): p. 1427-1435.
28. Jampani, V.S.R., et al., Micrometer-Scale Porous Buckling Shell Actuators Based on Liquid Crystal Networks. Advanced Functional Materials, 2018. 28(31).