簡易檢索 / 詳目顯示

研究生: 黃崇瑜
Huang, Chung-Yu
論文名稱: 負型五環素場效電晶體傳輸機制之探討
The study of charge transport mechanism in n-type pentacene-based organic field-effect transistors
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 96
中文關鍵詞: 有機場校電晶體N型五環素缺陷態照光
外文關鍵詞: Organic field-effect transistors, N-type, Pentacene, Trap states, Illumination
相關次數: 點閱:86下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討缺陷態對負型五環素場效電晶體的影響。在本質缺陷中討論了五環素蒸鍍速率對電子流的影響,在雜質缺陷中討論了曝氧對電子流造成的衰退現象,最後並利用缺陷態密度計算分析之。在論文中更進一步利用照光激發的方式驗證缺陷態載子的存在,但卻觀察到在照光下出現由單載子到雙載子傳輸的轉換現象以及電子流隨照光時間衰減。針對此問題,在論文中試著提出照光下的載子傳輸模型並利用實驗驗證之。藉由此討論讓我們對於五環素在電子傳輸上有更深入的了解。

    This study investigates the influence of the electronic trap states in pentacene-based organic field effect transistors (OFET) with pentacene as active layer, aluminum as source-drain electrodes, and polystyrene (PS) as dielectrics. It found that the different evaporated rates of pentacene are correlated with the amount of grain boundary which is consider as the intrinsic defects and affects the device characteristics. It also found the samples with exposing to oxygen resulting in the decay of electron mobility. This phenomenon ascribes to oxygen-related impurity defects. Both defects can be analyzed the trap density of sates by Kalb et al. In order to verify the existences of trap states, the photon excitation is a useful tool. But we observe a special phenomenon that the transformation from unipolar to ambipolar transport and the decay of electron flow under illumination. The ambipolar behavior and electron decay relate mainly to the trap states in electronic transport. This study provides insights of defects in channel, develops device structure and fabrication approaches, and evaluates the feasibility of n-type pentacene-based OFETs.

    第一章 緒論 1 1-1 有機場效電晶體的歷史 1 1-2 有機場效電晶體的特性 6 1-3 負型五環素場效電晶體的發展 9 1-4 研究動機與大綱 12 1-4-1 研究動機 12 1-4-2 研究大綱 13 第二章 有機場效電晶體基礎理論 14 2-1 有機材料的特性 14 2-2 有機半導體傳導機制 18 2-2-1 能帶分析 18 2-2-2 導電機制 21 2-2-3 導電方式 23 2-3 有機場效電晶體原理 26 2-3-1 場效電晶體之元件結構與工作原理 26 2-3-2 電壓-電流特性 29 2-4 有機場效電晶體雙載子特性 31 2-4-1 元件特性 31 2-4-2 電壓-電流特性方程式 34 2-5 有機場效電晶體缺陷態密度分析理論 35 2-6 結論 38 第三章 元件製作與實驗步驟 39 3-1 元件結構介紹 39 3-2 實驗方法及元件製作 42 3-2-1 ITO玻璃基板的閘極圖案化 42 3-2-2 閘極介電層製作 46 3-2-3 有機半導體主動層製作 48 3-2-4 源極及汲極之電極製作 50 3-2-5 元件量測 50 3-3 結論 53 第四章 負型五環素場效電晶體缺陷態對電子傳輸影響之探討 54 4-1 前言 54 4-2 負型五環素場效電晶體電性之探討 55 4-2-1 元件結構及電性 55 4-2-2 電洞流隨時間衰減之探討 57 4-3 缺陷態對電子流影響之探討 59 4-3-1 缺陷態類型之分析 59 4-3-2 探討不同鍍率造成之本質缺陷 60 4-3-3 探討氧氣造成之雜質缺陷 65 4-4 結論 71 第五章 利用照光激發電子缺陷態之分析 72 5-1 前言 72 5-2 照光激發缺陷態載子之探討 73 5-3 單載子至雙載子傳導轉換機制之分析及驗證 77 5-4 電子流隨時間衰減分析及驗證 85 5-5 結論 89 第六章 結論與研究建議 90 6-1 實驗結論 90 6-2 未來研究展望 92 參考文獻 93

    1.C. K. Chiang, C. B. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, “Electrical conductivity in doped polyacetylene,” Phys. Rev. Lett. 39(17), 1098-1101 (1977).

    2.H. Koezuka, A. Tsumura, and T. Ando, “Field-effect transistor with polythiophene thin film,” Synth. Met. 18(1), 699-704 (1987).

    3.Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, “Stacked pentacene layer organic thin-film transistors with improved characteristics,” IEEE Electron Dev. Lett. 18(12), 606-608 (1997).

    4.H. Klauk, “Organic thin-film transistors,” Chem. Soc. Rev. 39(7), 2643-2666 (2010).

    5.C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett. 51, 913 (1987).

    6.D. H. Kim, N. Lu, R. Ma, Y. S. Kim, R. H. Kim, S. Wang, J. Wu, S. M. Won, H. Tao, A. Islam, K. J. Yu, T. I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H. J. Chung, H. Keum, M. McCormick, P. Liu, Y. W. Zhang, F. G. Omenetto, Y. Huang, T. Coleman, and J. A. Rogers, “Epidermal electronics,” Science 333(6044), 838-843 (2011).

    7.L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, “General observation of n-type field-effect behaviour in organic semiconductors,” Nature 434(7030), 194-199 (2005).

    8.J. Zaumseil and H. Sirringhaus, “Electron and Ambipolar Transport in Organic Field-Effect Transistors,” Chem. Rev. 107(4), 1296-1323 (2007).

    9.D. Jurchescu, M. Popinciuc, B. J. V. Wees, and T. T. M. Palstra, “Interface-controlled, high-mobility organic transistors,” Adv. Mater. (Deerfield Beach Fla.) 19(5), 688-692 (2007).

    10.T. Yasuda, T. Goto, K. Fujita, and T. Tsutsui, “Ambipolar pentacene field-effect transistors with calcium source-drain electrodes,” Appl. Phys. Lett. 85, 2098 (2004).

    11.T. B. Singh, F. Meghdadi, S. Günes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, and N. S. Sariciftci,” High-performance ambipolar pentacene field-effect transistors on poly(vinyl alcohol) organic gate dielectric,” Adv. Mater. (Deerfield Beach Fla.) 17(19), 2315-2320 (2005).

    12.J. W. Chang, W. L. Hsu, C. Y. Wu, T. F. Guo, T. C. Wen, “The polymer gate dielectrics and source-drain electrodes on n-type pentacene-based organic field-effect transistors,” Org. Electron. 11(10), 1613-1619 (2010).

    13.H. Wang, J. Wang, X. Yan, J. Shi, H. Tian, Y. Geng, and D. Yan, “Ambipolar organic field-effect transistors with air stability, high mobility, and balanced transport,” Appl. Phys. Lett. 88, 133508 (2006).

    14.W. Brutting, “Physics of organic semiconductors,” Wiley-VCH, Weinheim, FRG (2006).

    15.N. Karl and J. Marktanner, “Electron and hole mobilities in high purity anthracene single crystals,” Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A 355(1), 149-173 (2001).

    16.S. M. Sze, “Semiconductor device:physics and technology, 2nd edition,” Wiley, New York (2001).

    17.M. Pope and C. E. Swenberg, “Elctronic processes in organic crystals and polymers, 2nd edition,” Oxford University Press, New York (1999).

    18.G. Horowitz, “Organic field-effect transistors,” Adv. Mater. (Deerfield Beach Fla.) 10(5), 365-377 (1998).

    19.J. Veres, S. Ogier, and G. Lloyd, “Gate insulaters in organic field-effect transistors,” Chem. Mater. 16(23), 4543-4555 (2004).

    20.J. Shi, H. Wang, D. Song, H. Tian, Y. Geng, and D. Yan, “n-channel, ambipolar, and p-channel organic heterojunction transistors fabricated with various film morphologies,” Adv. Funct. Mater. 17(3), 397-400 (2007).

    21.R. Schmechel, M. Ahles, and H. V. Seggern, “A pentacene ambipolar transistor: Experiment and theory,” J. Appl. Phys. 98, 084511 (2005).

    22.W. L. Kalb, S. Haas, C. Krellner, T. Mathis, and B. Batlogg, “Trap density of states in small-molecule organic semiconductors: A quantitative comparison of thin-film transistors with single crystals,” Phys. Rev. B 81,155315 (2010).

    23.C. Kim, A. Facchetti, and T. J. Marks, “Gate dielectric microstructural control of pentacene film growth mode and field-effect transistor performance,” Adv. Mater. (Deerfield Beach Fla.) 19(18), 2561-2566 (2007).

    24.H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and W. Radlik, “High-mobility polymer gate dielectric pentacene thin film transistors,”
    J. Appl. Phys. 92, 5259 (2002).

    25.J. W. Chang, P. W. Liang, M. W. Lin, T. F. Guo, T. C. Wen, Y. J. Hsu, “An ambipolar to n-type transformation in pentacene-based organic field-effect transistors,” Org. Electron. 12(3), 509-515 (2011).

    26.O. D. Jurchescu, J. Baas, and T. T. M. Palstra, “Effect of impurities on the mobility of single crystal pentacene,” Appl. Phys. Lett. 84, 3061 (2004).

    27.A. Benor, D. Knipp, J. Northrup, A. R. Völkel, R. A. Street, “Influence of gap states on the electrical stability of pentacene thin film transistors,”
    J. Non-Cryst. Solids 354(19-25), 2875-2878 (2008).

    28.K. Lee, M. S. Oh, S. J. Mun, K. H. Lee, T. W. Ha, J. H. Kim, S. H. K. Park, C. S. Hwang, B. H. Lee, M. M. Sung, and S. Im, “Interfacial trap density-of-states in pentacene- and ZnO-based thin-film transistors measured via novel photo-excited charge-collection spectroscopy,” Adv. Mater. (Deerfield Beach Fla.) 22(30), 3260-3265 (2010).

    無法下載圖示 校內:2017-07-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE