| 研究生: |
劉成駿 Liu, Cheng-Chun |
|---|---|
| 論文名稱: |
使用數值模擬對全機流場分析和優化 Flow Field Analyze and Optimization for Aircraft Using Numerical Simulation |
| 指導教授: |
林三益
Lin, San-Yih |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 整機優化 、伴隨算子 、剪應力傳輸紊流模型 、氣動力 、可壓縮流 |
| 外文關鍵詞: | shape optimization, adjoint operator, SST turbulence model, aerodynamic performance, compressible flow |
| 相關次數: | 點閱:136 下載:50 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討使用SU2進行流場的預測和飛機的優化模擬,將結果和Fluent計算結果與實驗數據進行比對。讓飛機在相同升力係數(C_L)下所產生的阻力係數(C_(D ))減少進而提高所帶來的經濟效益,減少環境的污染與飛行時所產生的燃油消耗。本研究使用商業套裝軟體ANSYS Fluent進行DLR-F6外型的外部流場數值模擬與網格的建造,首先網格採用混合非結構型網格,於物體表面周圍建立菱柱型網格(Prism Mesh)來模擬邊界層附近的黏性流場,其他外圍計算領域則使用四面體網格(Tetrahedron Mesh),將模擬結果的升力係數(C_L)與阻力係數(C_(D ))與開源軟件SU2計算結果進行比對,接著使用SU2自帶的優化工具,伴隨算子(adjoint operator)對其外型進行優化設計。流場計算使用可壓縮流Reynolds-averged Navier-Stokes quations(RANS)對DLR-F6進行流場的預測,在紊流模擬上使用SST(Shear-Stress Transport)k-ω model剪應力傳輸紊流模型,透過改變飛機的外型使DLR-F6的空氣動力特性比原始外型佳。綜合上述,本文證明了SU2在全機流場模擬與優化中之可行性和準確性,可為航天工程設計與優化提供了一種有效的工具。
This study discusses the prediction of the flow field and the shape optimization of the whole aircraft machine using SU2 and compares the results with the Fluent calculation results and the experimental data. The drag coefficient(C_(D )) produced by the aircraft under the same lift coefficient (C_L) is reduced to improve the aerodynamic performance and reduce environmental pollution and fuel consumption during flight. The commercial package software ANSYS Fluent is also used to carry out the numerical simulation of the external flow field of the aerodynamic shape of DLR-F6 and the construction of the grid. First, the grid adopts a mixed unstructured type, and a prismatic grid is established around the surface of the object to simulate the viscous flow field near the boundary layer, other peripheral computing fields use tetrahedron mesh, and the lift coefficient (C_L) and drag coefficient (C_(D )) of the simulation results are calculated with the open source software SU2. Then use the optimization tool that comes with SU2 to optimize its appearance.
[1] HE, Ping, et al. An aerodynamic design optimization framework using a discrete adjoint approach with OpenFOAM. Computers & Fluids, 2018, 168: 285-303.
[2] Dwight, R. P., & Brezillon, J. (2006). Effect of Approximations of the Discrete Adjoint on Gradient-Based Optimization. AIAA Journal, 44(12), 3022–3031. doi:10.2514/1.21744
[3] Reuther, J. J., Jameson, A., Alonso, J. J., Rimllnger, M. J., & Saunders, D. (1999). Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers, Part 2. Journal of Aircraft, 36(1), 61–74. doi:10.2514/2.2414
[4] ECONOMON, Thomas D., et al. Performance optimizations for scalable implicit RANS calculations with SU2. Computers & Fluids, 2016, 129: 146-158.
[5] GATLIN, Gregory, et al. Experimental investigation of the DLR-F6 transport configuration in the national transonic facility. In: 26th AIAA Applied Aerodynamics Conference. 2008. p. 6917.
[6] ELIASSON, Peter; PENG, Shia-Hui. Drag prediction for the DLR-F6 wing-body configuration using the EDGE solver. Journal of aircraft, 2008, 45.3: 837-847
[7] MAY, Georg, et al. Drag prediction of the DLR-F6 configuration. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit. 2004. p. 396.
[8] LI, D.; HARTMANN, R. Adjoint‐based airfoil optimization with discretization error control. International Journal for Numerical Methods in Fluids, 2015, 77.1: 1-17.
[9] PALACIOS, Francisco; ECONOMON, Thomas D.; ALONSO, Juan J. Large-scale aircraft design using SU2. In: 53rd AIAA aerospace sciences meeting. 2015. p. 1946.
[10] POLL, D. I. A.; SCHUMANN, Ulrich. An estimation method for the fuel burn and other performance characteristics of civil transport aircraft during cruise: part 2, determining the aircraft’s characteristic parameters. The Aeronautical Journal, 2021, 125.1284: 296-340.
[11] COLLINS, Bela P. Estimation of aircraft fuel consumption. Journal of Aircraft, 1982, 19.11: 969-975.
[12] Lock, R. C., “The PredictionoftheDrag of Aerofoils andWingsat High Subsonic Speeds,” Aeronautical Journal, Vol. 90, No. 896, 1986, pp. 207– 226.
[13] ABBAS, A.; DE VICENTE, J.; VALERO, E. Aerodynamic technologies to improve aircraft performance. Aerospace science and technology, 2013, 28.1: 100-132.
[14] YANG, Guangda, et al. Sensitivity assessment of optimal solution in aerodynamic design optimisation using SU2. Aerospace Science and Technology, 2018, 81: 362-374.
[15] ECONOMON, Thomas D., et al. SU2: An open-source suite for multiphysics simulation and design. Aiaa Journal, 2016, 54.3: 828-846.
[16] PALACIOS, Francisco, et al. Stanford university unstructured (SU2): Analysis and design technology for turbulent flows. In: 52nd Aerospace Sciences Meeting. 2014. p. 0243.
[17] PALACIOS, Francisco, et al. Stanford university unstructured (su 2): an open-source integrated computational environment for multi-physics simulation and design. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 2013. p. 287.
[18] Hirsch C.Numerical Computation of Internal and External Flows, Wiley, New York (1984)
[19] D.C. Wilcox. Turbulence Modeling for CFD. 2nd Ed., DCW Industries, Inc., 1998.
[20] SPALART, Philippe; ALLMARAS, Steven. A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit. 1992. p. 439.
[21] https://turbmodels.larc.nasa.gov/spalart.html
[22] Wilcox D.Turbulence Modeling for CFD (2nd ed.), DCW Industries, Inc. (1998)
[23] MENTER, Florian R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 1994, 32.8: 1598-1605.
[24] ANSYS:https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node67.htm
[25] NICHOLS, Robert H.; NELSON, C. C. Wall function boundary conditions including heat transfer and compressibility. AIAA journal, 2004, 42.6: 1107-1114.
[26] SEDERBERG, Thomas W.; PARRY, Scott R. Free-form deformation of solid geometric models. In: Proceedings of the 13th annual conference on Computer graphics and interactive techniques. 1986. p. 151-160.
[27] Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solution of the Euler Equations by Finite Volume. Methods Using Runge–Kutta TimeStepping Schemes,” 14th AIAA Fluid and Plasma Dynamics Conference, AIAA Paper 1981-1259, June 1981.
[28] JAMESON, Antony. Origins and further development of the Jameson–Schmidt–Turkel scheme. AIAA Journal, 2017, 55.5: 1487-1510.
[29] C. Castro, C. Lozano, F. Palacios, and E. Zuazua. A systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids. AIAA Journal, 45(9):2125–2139, 2007. DOI: 10.2514/1.24859.
[30] Courant, R.; Friedrichs, K.; Lewy, H. (1928), "Über die partiellen Differenzengleichungen der mathematischen Physik", Mathematische Annalen (in German), 100 (1): 32–74, Bibcode:1928MatAn.100...32C, doi:10.1007/BF01448839, JFM 54.0486.01, MR 1512478, S2C
[31] PALACIOS, Francisco, et al. Stanford university unstructured (su 2): an open-source integrated computational environment for multi-physics simulation and design. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 2013. p. 287.
[32] CORLISS, George, et al. (ed.). Automatic differentiation of algorithms: from simulation to optimization. Springer Science & Business Media, 2002.
[33] GRIEWANK, Andreas; WALTHER, Andrea. Evaluating derivatives: principles and techniques of algorithmic differentiation. Society for industrial and applied mathematics, 2008.
[34] https://aiaa-dpw.larc.nasa.gov/Workshop2/DLR-F6-geom.html
[35] ROSSOW, C.-C., et al. Investigations of propulsion integration interference effects on a transport aircraft configuration. Journal of Aircraft, 1994, 31.5: 1022-1030.
[36] ABBOTT, Ira H.; VON DOENHOFF, Albert E. Theory of wing sections: including a summary of airfoil data. Courier Corporation, 2012.
[37] SCHMITT, V. Pressure distributions on the ONERA M6-wing at transonic mach numbers, experimental data base for computer program assessment. AGARD AR-138, 1979.
[38] DURRANI, Naveed; QIN, Ning. Comparison of RANS, DES and DDES results for ONERA M-6 Wing at transonic flow speed using an in-house parallel code. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. p. 190.
[39] STRAATHOF, Michiel; VAN TOOREN, M. Adjoint optimization of a wing using the CSRT method. In: 29th AIAA Applied Aerodynamics Conference. 2011. p. 3804.
[40] https://turbmodels.larc.nasa.gov/onerawingnumerics_val.html
[41] Neal T. Frink and William E. Milholen, II.,Assessment of the Unstructured Grid Software TetrUSS for Darg Prediction of the DLR-F6 21th AIAA Applied Aerodynamics conference,orlando,florida,june,2003
[42] Second AIAA CFD Drag Prediction Workshop. http://aiaa-dpw.larc.nasa.gov/Workshop2/dpw@cessna.textron.com, Orlando, FL, June 2003.