簡易檢索 / 詳目顯示

研究生: 劉成駿
Liu, Cheng-Chun
論文名稱: 使用數值模擬對全機流場分析和優化
Flow Field Analyze and Optimization for Aircraft Using Numerical Simulation
指導教授: 林三益
Lin, San-Yih
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 90
中文關鍵詞: 整機優化伴隨算子剪應力傳輸紊流模型氣動力可壓縮流
外文關鍵詞: shape optimization, adjoint operator, SST turbulence model, aerodynamic performance, compressible flow
相關次數: 點閱:136下載:50
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討使用SU2進行流場的預測和飛機的優化模擬,將結果和Fluent計算結果與實驗數據進行比對。讓飛機在相同升力係數(C_L)下所產生的阻力係數(C_(D ))減少進而提高所帶來的經濟效益,減少環境的污染與飛行時所產生的燃油消耗。本研究使用商業套裝軟體ANSYS Fluent進行DLR-F6外型的外部流場數值模擬與網格的建造,首先網格採用混合非結構型網格,於物體表面周圍建立菱柱型網格(Prism Mesh)來模擬邊界層附近的黏性流場,其他外圍計算領域則使用四面體網格(Tetrahedron Mesh),將模擬結果的升力係數(C_L)與阻力係數(C_(D ))與開源軟件SU2計算結果進行比對,接著使用SU2自帶的優化工具,伴隨算子(adjoint operator)對其外型進行優化設計。流場計算使用可壓縮流Reynolds-averged Navier-Stokes quations(RANS)對DLR-F6進行流場的預測,在紊流模擬上使用SST(Shear-Stress Transport)k-ω model剪應力傳輸紊流模型,透過改變飛機的外型使DLR-F6的空氣動力特性比原始外型佳。綜合上述,本文證明了SU2在全機流場模擬與優化中之可行性和準確性,可為航天工程設計與優化提供了一種有效的工具。

    This study discusses the prediction of the flow field and the shape optimization of the whole aircraft machine using SU2 and compares the results with the Fluent calculation results and the experimental data. The drag coefficient(C_(D )) produced by the aircraft under the same lift coefficient (C_L) is reduced to improve the aerodynamic performance and reduce environmental pollution and fuel consumption during flight. The commercial package software ANSYS Fluent is also used to carry out the numerical simulation of the external flow field of the aerodynamic shape of DLR-F6 and the construction of the grid. First, the grid adopts a mixed unstructured type, and a prismatic grid is established around the surface of the object to simulate the viscous flow field near the boundary layer, other peripheral computing fields use tetrahedron mesh, and the lift coefficient (C_L) and drag coefficient (C_(D )) of the simulation results are calculated with the open source software SU2. Then use the optimization tool that comes with SU2 to optimize its appearance.

    中文摘要i Extended Abstract ii 致謝viii 目錄ix 符號說明xiv 緒論1 1.1前言1 1.2研究動機與目的 1 1.3文獻回顧 2 1.4內容大綱 5 空氣動力學理論基礎7 2.1基礎理論7 2.2基本氣動力參數7 2.3氣動力中心(aerodynamic center) 8 2.4重心位置(center of gravity)8 2.5穿音速流體(transonic flow)8 數值方法9 3.1統御方程式9 3.2紊流模型(Turbulence Modeling) 10 3.2.1 S-A(Spalart-Allmaras) model11 3.2.2 SST(Shear-Stress Transport)k-ωmodel12 3.3 壁面函數14 3.4 Free-Form deformation(FFD)15 3.5 Jameson-Schmidt-Turkel scheme (JST)15 3.6定義目標函數(Definition of the objective function)17 3.7庫郎數(Courant-Friedrichs-Lewy)17 3.8離散伴隨法(Discrete Adjoint Method)18 3.9幾何外型19 第四章 程式與物理模型驗證20 4.1 FLUENT與SU2對NACA0012翼型之升阻力係數預測驗證20 4.2 FLUENT與SU2對ONERA M6機翼之流場模擬驗證21 4.3網格數量比較22 4.4 FLUENT與SU2對DLR-F6 Wing-Body全機流場模擬驗證22 4.5 使用SU2對DLR-F6進行優化24 第五章 結果與討論27 5.1優化機翼之空氣動力特性比較27 5.1.1 外型變化之比較27 5.1.2阻力係數變化之比較28 5.1.3壓力係數變化之比較28 5.2.優化機身之空氣動力特性比較29 5.2.1阻力係數變化之比較30 5.3優化整機之空氣動力特性比較30 5.3.1 外型變化之比較30 5.3.2 優化整機阻力係數之比較31 5.3.3 優化整機壓力係數變化之比較31 CFL值33 第六章 結論與建議34 6.1結論34 6.2建議36 參考文獻38 表3.1 DLR-F6 Wing-Bod的各項外型數據42 表4.1 ONERA M6 機翼幾何外型數據42 表4.2 ONERA M6機翼升力係數與阻力係數的驗證[38][39]43 表4.3 DLR-F6 Wing-Body 網格設置比較43 表4.4 DLR-F6 Wing-Body升力係數與阻力係數比較[42]44 表4.5 DLR-F6 機翼幾何評估44 圖3-1 機翼Free-Form deformation設置45 圖3-2 機身Free-Form deformation設置45 圖3-3 整機Free-Form deformation設置46 圖3-4 DLR-F6幾何外型數據[34]46 圖4-1 NACA0012幾何外型47 圖4-2 NACA0012計算流域幾何外型47 圖4-3 NACA0012流場(a)網格配置(b)靠近壁面處網格48 圖4-4 NACA0012流場邊界設定49 圖4-5 NACA0012雷諾數為3E+06之升力係數比較49 圖4-6 NACA0012雷諾數為3E+06之阻力係數比較50 圖4-7 ONERA M6機翼幾何外型[37]50 圖4-8 ONERA M6機翼計算流域幾何外型51 圖4-9 ONERA M6機翼(a)網格設置(b)機翼表面網格(c)靠近壁面處網格52 圖4-10 ONERA M6機翼(a)上表面〖 y〗^+分布(b)上表面〖 y〗^+分布53 圖4-11 ONERA M6 機翼邊界條件設定54 圖4-12 ONERA M6 FLUENT(a)上(b)下表面無因次量機翼壓力分布55 圖4-13 ONERA M6 SU2(a)上(b)下表面無因次量機翼壓力分布56 圖4-14 ONERA M6各節點壓力係數比較之位置56 圖4-15(a-g) ONERA M6機翼表面上不同位置之壓力係數分布60 圖4-16 DLR-F6不同網格數目之(a)升力係數(b)阻力係數比較61 圖4-17 DLR-F6 計算流域幾何外型61 圖4-18 DLR-F6(a)邊界條件設定(b)機身機翼命名62 圖4-19 DLR-F6(a)網格設置(b)機翼機身表面網格(c)靠近壁面處網格64 圖4-20 DLR-F6(a)上表面(b)下表面y^+分布65 圖4-21 DLR-F6機身機翼阻力係數占比65 圖4-22 DLR-F6 Fluent(a)上(b)下表面無因次量整機壓力分布66 圖4-23 DLR-F6 SU2(a)上(b)下表面無因次量整機壓力分布67 圖4-24 DLR-F6各節點壓力係數比較之位置68 圖4-25(a-h) DLR_F6機翼表面上不同位置之壓力係數分布72 圖4-26 DLR-F6 (a)風洞實驗(b)Fluent模擬(c)SU2模擬表面流線73 圖4-27 DLR-F6機翼厚度約束位置設置74 圖4-28 優化流程74 圖5-1 DLR-F6機翼(a)上方(b)下方優化前後形狀變化比較75 圖5-2 優化機翼後機翼各位置(15% ~ 84.7%)之厚度變化比較76 圖5-3 DLR-F6機翼優化迭代次數圖77 圖5-4 DLR-F6優化機翼後之(a)上(b)下表面無因次量整機壓力分布78 圖5-5(a-h) DLR_F6 機翼表面上不同位置之壓力係數分布比較82 圖5-6 DLR-F6機身(a)上方(b)下方優化前後形狀變化比較83 圖5-7 DLR-F6整機(a)上方(b)下方優化前後形狀變化比較84 圖5-8 DLR-F6整機優化迭代次數圖84 圖5-9 優化整機後機翼各位置(15% ~ 84.7%)之厚度變化比較85 圖5-10 DLR-F6優化整機後之(a)上(b)下表面無因次量整機壓力分布86 圖5-11 (a-h) DLR_F6 機翼表面上不同位置之壓力係數分布比較90

    [1] HE, Ping, et al. An aerodynamic design optimization framework using a discrete adjoint approach with OpenFOAM. Computers & Fluids, 2018, 168: 285-303.
    [2] Dwight, R. P., & Brezillon, J. (2006). Effect of Approximations of the Discrete Adjoint on Gradient-Based Optimization. AIAA Journal, 44(12), 3022–3031. doi:10.2514/1.21744
    [3] Reuther, J. J., Jameson, A., Alonso, J. J., Rimllnger, M. J., & Saunders, D. (1999). Constrained Multipoint Aerodynamic Shape Optimization Using an Adjoint Formulation and Parallel Computers, Part 2. Journal of Aircraft, 36(1), 61–74. doi:10.2514/2.2414
    [4] ECONOMON, Thomas D., et al. Performance optimizations for scalable implicit RANS calculations with SU2. Computers & Fluids, 2016, 129: 146-158.
    [5] GATLIN, Gregory, et al. Experimental investigation of the DLR-F6 transport configuration in the national transonic facility. In: 26th AIAA Applied Aerodynamics Conference. 2008. p. 6917.
    [6] ELIASSON, Peter; PENG, Shia-Hui. Drag prediction for the DLR-F6 wing-body configuration using the EDGE solver. Journal of aircraft, 2008, 45.3: 837-847
    [7] MAY, Georg, et al. Drag prediction of the DLR-F6 configuration. In: 42nd AIAA Aerospace Sciences Meeting and Exhibit. 2004. p. 396.
    [8] LI, D.; HARTMANN, R. Adjoint‐based airfoil optimization with discretization error control. International Journal for Numerical Methods in Fluids, 2015, 77.1: 1-17.
    [9] PALACIOS, Francisco; ECONOMON, Thomas D.; ALONSO, Juan J. Large-scale aircraft design using SU2. In: 53rd AIAA aerospace sciences meeting. 2015. p. 1946.
    [10] POLL, D. I. A.; SCHUMANN, Ulrich. An estimation method for the fuel burn and other performance characteristics of civil transport aircraft during cruise: part 2, determining the aircraft’s characteristic parameters. The Aeronautical Journal, 2021, 125.1284: 296-340.
    [11] COLLINS, Bela P. Estimation of aircraft fuel consumption. Journal of Aircraft, 1982, 19.11: 969-975.
    [12] Lock, R. C., “The PredictionoftheDrag of Aerofoils andWingsat High Subsonic Speeds,” Aeronautical Journal, Vol. 90, No. 896, 1986, pp. 207– 226.
    [13] ABBAS, A.; DE VICENTE, J.; VALERO, E. Aerodynamic technologies to improve aircraft performance. Aerospace science and technology, 2013, 28.1: 100-132.
    [14] YANG, Guangda, et al. Sensitivity assessment of optimal solution in aerodynamic design optimisation using SU2. Aerospace Science and Technology, 2018, 81: 362-374.
    [15] ECONOMON, Thomas D., et al. SU2: An open-source suite for multiphysics simulation and design. Aiaa Journal, 2016, 54.3: 828-846.
    [16] PALACIOS, Francisco, et al. Stanford university unstructured (SU2): Analysis and design technology for turbulent flows. In: 52nd Aerospace Sciences Meeting. 2014. p. 0243.
    [17] PALACIOS, Francisco, et al. Stanford university unstructured (su 2): an open-source integrated computational environment for multi-physics simulation and design. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 2013. p. 287.
    [18] Hirsch C.Numerical Computation of Internal and External Flows, Wiley, New York (1984)
    [19] D.C. Wilcox. Turbulence Modeling for CFD. 2nd Ed., DCW Industries, Inc., 1998.
    [20] SPALART, Philippe; ALLMARAS, Steven. A one-equation turbulence model for aerodynamic flows. In: 30th aerospace sciences meeting and exhibit. 1992. p. 439.
    [21] https://turbmodels.larc.nasa.gov/spalart.html
    [22] Wilcox D.Turbulence Modeling for CFD (2nd ed.), DCW Industries, Inc. (1998)
    [23] MENTER, Florian R. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 1994, 32.8: 1598-1605.
    [24] ANSYS:https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node67.htm
    [25] NICHOLS, Robert H.; NELSON, C. C. Wall function boundary conditions including heat transfer and compressibility. AIAA journal, 2004, 42.6: 1107-1114.
    [26] SEDERBERG, Thomas W.; PARRY, Scott R. Free-form deformation of solid geometric models. In: Proceedings of the 13th annual conference on Computer graphics and interactive techniques. 1986. p. 151-160.
    [27] Jameson, A., Schmidt, W., and Turkel, E., “Numerical Solution of the Euler Equations by Finite Volume. Methods Using Runge–Kutta TimeStepping Schemes,” 14th AIAA Fluid and Plasma Dynamics Conference, AIAA Paper 1981-1259, June 1981.
    [28] JAMESON, Antony. Origins and further development of the Jameson–Schmidt–Turkel scheme. AIAA Journal, 2017, 55.5: 1487-1510.
    [29] C. Castro, C. Lozano, F. Palacios, and E. Zuazua. A systematic continuous adjoint approach to viscous aerodynamic design on unstructured grids. AIAA Journal, 45(9):2125–2139, 2007. DOI: 10.2514/1.24859.
    [30] Courant, R.; Friedrichs, K.; Lewy, H. (1928), "Über die partiellen Differenzengleichungen der mathematischen Physik", Mathematische Annalen (in German), 100 (1): 32–74, Bibcode:1928MatAn.100...32C, doi:10.1007/BF01448839, JFM 54.0486.01, MR 1512478, S2C
    [31] PALACIOS, Francisco, et al. Stanford university unstructured (su 2): an open-source integrated computational environment for multi-physics simulation and design. In: 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 2013. p. 287.
    [32] CORLISS, George, et al. (ed.). Automatic differentiation of algorithms: from simulation to optimization. Springer Science & Business Media, 2002.
    [33] GRIEWANK, Andreas; WALTHER, Andrea. Evaluating derivatives: principles and techniques of algorithmic differentiation. Society for industrial and applied mathematics, 2008.
    [34] https://aiaa-dpw.larc.nasa.gov/Workshop2/DLR-F6-geom.html
    [35] ROSSOW, C.-C., et al. Investigations of propulsion integration interference effects on a transport aircraft configuration. Journal of Aircraft, 1994, 31.5: 1022-1030.
    [36] ABBOTT, Ira H.; VON DOENHOFF, Albert E. Theory of wing sections: including a summary of airfoil data. Courier Corporation, 2012.
    [37] SCHMITT, V. Pressure distributions on the ONERA M6-wing at transonic mach numbers, experimental data base for computer program assessment. AGARD AR-138, 1979.
    [38] DURRANI, Naveed; QIN, Ning. Comparison of RANS, DES and DDES results for ONERA M-6 Wing at transonic flow speed using an in-house parallel code. In: 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011. p. 190.
    [39] STRAATHOF, Michiel; VAN TOOREN, M. Adjoint optimization of a wing using the CSRT method. In: 29th AIAA Applied Aerodynamics Conference. 2011. p. 3804.
    [40] https://turbmodels.larc.nasa.gov/onerawingnumerics_val.html
    [41] Neal T. Frink and William E. Milholen, II.,Assessment of the Unstructured Grid Software TetrUSS for Darg Prediction of the DLR-F6 21th AIAA Applied Aerodynamics conference,orlando,florida,june,2003
    [42] Second AIAA CFD Drag Prediction Workshop. http://aiaa-dpw.larc.nasa.gov/Workshop2/dpw@cessna.textron.com, Orlando, FL, June 2003.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE