簡易檢索 / 詳目顯示

研究生: 荊裕荃
Ching, Yu-Chuan
論文名稱: 應用集群方法於直覺式模糊之群體決策模式
Applying Clustering Methods for Group Decision Making Problems in Intuitionistic Fuzzy Environments
指導教授: 陳梁軒
Chen, Liang-Hsuan
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 115
中文關鍵詞: 直覺式模糊集合群體決策多屬性決策集群分析分群效度指標
外文關鍵詞: Intuitionistic Fuzzy Sets, Group Decision, Multiple Attribute Decision, Cluster Analysis, Cluster Validity Index
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    決策是日常生活中最常見的問題之一,近年來其複雜性隨著科技與資訊的蓬勃發展而日益提升。因此,通常會由多位決策參與者組成決策團隊來共同進行決策,並考量多個目標或多項決策屬性之多準則決策模式,以獲得更縝密且公正的決策結果。在決策資訊方面,本研究採用直覺式模糊集合以同時表達正向、負向以及不確定等三種資訊,進而幫助決策參與者們更清楚地表達其思緒與想法。
    在決策流程中,整合所有決策資訊的流程為必要環節之一,而各筆決策資訊之權重對整合結果有著舉足輕重的影響力。因此,如何合理並有系統地計算各筆決策資訊之權重,是決策領域中相當值得深究的議題。然而在過往文獻中,較缺乏以辨別力為核心概念的權重演算法,因此本研究將集群分析與分群效度指標之概念應用於決策領域,進而發展出一套以決策資訊所蘊含的辨別力為權重給定依據之權重演算法。
    本研究之權重演算法利用集群分析對決策資訊作前置處理以獲得分群結果,再藉由分群效度指標衡量分群結果所蘊含的辨別力並推算出其權重。而在集群分析階段,本研究發展出一套新的距離/相似測度公式,用以必要之計算。接著,本研究建構了一套直覺式模糊群體多屬性決策模式。
    再來,本研究透過實際範例進行範例演算,進而比較並分析本研究與過往文獻的權重演算法,於各筆決策資訊之權重與最佳解決方案之排序結果上的差異。根據演算結果,過往文獻之演算法皆有所缺點,會導致不合理的數值結果且較缺乏縝密性與合理性。而本研究之權重演算法能有效地根據決策資訊所蘊含的辨別力加以給定權重,也更加具有縝密性與合理性。最後,本研究對權重演算法與測度公式進行了敏感度分析,進而檢視調整各項參數對權重與最佳解決方案之影響。根據演算結果,本研究於權重演算法與測度公式之各項參數的設定皆具有合理性與必要性。

    關鍵字:直覺式模糊集合、群體決策、多屬性決策、集群分析、分群效度指標

    SUMMARY

    Decision making(DM) is an important part of daily life, and it has become increasingly more complex with advances in information science and technology. To deal with complex DM problems, multiple attribute group decision making(MAGDM) models are useful tools to obtain the convincing results. When decision-makers in a group are evaluating a problem, there will be some uncertain areas in human thought processess. In this situation, intuitionistic fuzzy sets(IFSs) provide a better way to handle fuzziness and uncertainty, and they can serve as good tools for decision-makers to provide their subjective views.
    During DM procedures, it’s necessary and important to calculate the weight of each decision-maker and attribute in a reasonable way. However, there is no reasonable weight algorithm based on the concept of discrimination in the existing literature. In view of this, we use cluster analysis and cluster validity indexes to develop a new weight algorithm based on the concept of discrimination.
    Furthermore, we develop a MAGDM model in intuitionistic fuzzy environments. During the DM procedures applied in our thesis, we also develop a new measurement formula to do the necessary calculations because there are some problems in the existing formulas.
    Finally, we illustrate the procedures of our weight algorithm and MAGDM models with actual cases, and then compare results with those from the existing literature. It was found that our weight algorithm provides more reasonable and convincing results than those in the existing literature.

    Keywords: Intuitionistic Fuzzy Sets, Group Decision, Multiple Attribute Decision, Cluster Analysis, Cluster Validity Index

    目錄 摘要 I 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XIII 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究流程 4 1.4 研究架構 4 第二章 文獻探討 7 2.1 直覺式模糊集合理論 7 2.1.1 直覺式模糊集合 7 2.1.2 直覺式模糊距離與相似測度 9 2.1.3 直覺式模糊整合運算公式 14 2.1.4 直覺式模糊評分與排序函數 15 2.2 群體與多準則決策模式 20 2.2.1 群體決策模式 20 2.2.2 多準則決策模式 21 2.2.3 權重演算法 22 2.3 集群分析與分群效度指標 27 2.3.1 集群分析 27 2.3.2 分群效度指標 30 第三章 決策模式 33 3.1 研究構想 33 3.1.1 問題描述 34 3.1.2 研究假設 35 3.1.3 決策模式流程 36 3.1.4 符號定義 37 3.2 直覺式糢糊距離/相似測度公式與權重演算法 38 3.2.1 直覺式模糊距離/相似測度公式 39 3.2.2 權重演算法 42 3.3 決策模式之建構 45 3.3.1 初始階段 46 3.3.2 決策參與者整合階段 47 3.3.3 決策屬性整合階段 51 3.3.4 最終決策階段 54 3.4 小結 55 第四章 範例演算 57 4.1 決策範例 57 4.1.1 本研究之權重演算法 57 4.1.2 與其它權重演算法之比較 75 4.1.3 佐證之其它決策範例 83 4.2 敏感度分析 89 4.2.1 調整係數α 89 4.2.2 二元合併演算法之回合數 91 4.2.3 門檻值λ之標準差數目 92 第五章 結論與建議 96 5.1 研究結論 96 5.2 未來研究方向 97 參考文獻 99 附錄 104

    參考文獻
    中文部分
    洪舜平. (2018). 應用證據推理法於直覺模糊環境之群體決策模式. 成功大學工業與資訊管理學系學位論文, 1-82.
    蔡紹緯. (2014). 直覺式模糊集群分析與效度指標. 成功大學工業與資訊管理學系學位論文, 1-78.
    英文部分
    Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20(1), 87-96.
    Bellman, R., Kalaba, R., & Zadeh, L. (1966). Abstraction and pattern classification. Journal of Mathematical Analysis and Applications, 13(1), 1-7.
    Bezdek, J. C. (1981). Pattern recognition with fuzzy objective function algorithms. Boston: Springer.
    Boran, F. E., & Akay, D. (2014). A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition. Information Sciences, 255, 45-57.
    Bui, T. X., & Jarke, M. (1986). Communications design for co-op: A group decision support system. Acm Transactions on Office Information Systems, 4(2), 81-103.
    Burillo, P., & Bustince, H. (1996). Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets. Fuzzy Sets and Systems, 78(3), 305-316.
    Chen, L. H., & Tu, C. C. (2014). Dual Bipolar Measures of Atanassov's Intuitionistic Fuzzy Sets. IEEE Transactions on Fuzzy Systems, 22(4), 966-982.
    Chen, S. M., & Tan, J. M. (1994). Handling multi-criteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 67(2), 163-172.
    Chen, X., & Fan, Z. (2007). Study on assessment level of experts based on difference preference information. Systems Engineering-Theory & Practice, 27(2), 27-35.
    Chen, Z. P., & Yang, W. (2011). A new multiple attribute group decision making method in intuitionistic fuzzy setting. Applied Mathematical Modelling, 35(9), 4424-4437.
    Delgado, M., Herrera, F., Herrera-Viedma, E., & Martinez, L. (1998). Combining numerical and linguistic information in group decision making. Information Sciences, 107(1-4), 177-194.
    Fan, L., & Zhangyan, X. (2001). Similarity measures between vague sets. J. Software, 12(6), 922-927.
    Fukuyama, Y. (1989). A new method of choosing the number of clusters for the fuzzy c-mean method. Proc. 5th Fuzzy System Symposium, 247-250.
    Höppner, F., Klawonn, F., Kruse, R., & Runkler, T. (1999). Fuzzy cluster analysis: methods for classification, data analysis and image recognition. New York: John Wiley & Sons.
    Hong, D. H., & Choi, C. H. (2000). Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems, 114(1), 103-113.
    Hung, W. L., & Yang, M. S. (2004). Similarity measures of intuitionistic fuzzy sets based on Hausdorff distance. Pattern Recognition Letters, 25(14), 1603-1611.
    Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making, Berlin: Springer.
    Kim, Y. I., Kim, D. W., Lee, D., & Lee, K. H. (2004). A cluster validation index for GK cluster analysis based on relative degree of sharing. Information Sciences, 168(1-4), 225-242.
    Klir, G., & Yuan, B. (1995). Fuzzy sets and fuzzy logic: theory and applications (Vol. 574). New Jersey: Prentice Hall.
    Li, D. F., & Cheng, C. T. (2002). New similarity measures of intuitionistic fuzzy sets and application to pattern recognitions. Pattern Recognition Letters, 23(1-3), 221-225.
    Li, Y., Zhongxian, C., & Degin, Y. (2002). Similarity measures between vague sets and vague entropy. Journal of Computer Science, 29(12), 129-132.
    Li, Z., Gao, H., & Wei, G. (2018). Methods for multiple attribute group decision making based on intuitionistic fuzzy dombi hamy mean operators. Symmetry, 10(11), 574.
    Liang, Z. Z., & Shi, P. F. (2003). Similarity measures on intuitionistic fuzzy sets. Pattern Recognition Letters, 24(15), 2687-2693.
    Liao, H., & Xu, Z. (2015). Consistency of the fused intuitionistic fuzzy preference relation in group intuitionistic fuzzy analytic hierarchy process. Applied Soft Computing, 35, 812-826.
    Luo, Y., & Wei, G. (2009). Multiple attribute decision making with intuitionistic fuzzy information and uncertain attribute weights using minimization of regret. 2009 4th IEEE Conference on Industrial Electronics and Applications, 3720-3723.
    Mao, J. J., Yao, D. B., & Wang, C. C. (2013). Group decision making methods based on intuitionistic fuzzy soft matrices. Applied Mathematical Modelling, 37(9), 6425-6436.
    Mitchell, H. B. (2003). On the Dengfeng-Chuntian similarity measure and its application to pattern recognition. Pattern Recognition Letters, 24(16), 3101-3104.
    Rezaee, B. (2010). A cluster validity index for fuzzy clustering. Fuzzy Sets and Systems, 161(23), 3014-3025.
    Ruspini, E. H. (1969). A new approach to clustering. Information and Control, 15(1), 22-32.
    Saaty, T. L. (1990). How to make a decision: the analytic hierarchy process. European Journal of Operational Research, 48(1), 9-26.
    Sato, M., Sato, Y., Jain, L. C., & Kacprzyk, J. (1997). Fuzzy clustering models and applications. Heidelberg: Physica Verlag.
    Si, Y.-j., & Wei, F.-j. (2009). Dynamic multiattribute decision making based on the intuitionistic fuzzy priority rating model. 2009 International Conference on Management Science and Engineering, 239-245.
    Song, Y. F., & Wang, X. D. (2017). A new similarity measure between intuitionistic fuzzy sets and the positive definiteness of the similarity matrix. Pattern Analysis and Applications, 20(1), 215-226.
    Szmidt, E., & Kacprzyk, J. (2000). Distances between intuitionistic fuzzy sets. Fuzzy Sets and Systems, 114(3), 505-518.
    Szmidt, E., & Kacprzyk, J. (2001). Entropy for intuitionistic fuzzy sets. Fuzzy Sets and Systems, 118(3), 467-477.
    Turban, E., Fisher, J. C., & Altman, S. (1988). Decision support systems in academic administration. Journal of Educational Administration, 26(1), 97-113.
    Wang, W. N., & Zhang, Y. J. (2007). On fuzzy cluster validity indices. Fuzzy Sets and Systems, 158(19), 2095-2117.
    Wang, Y. M., & Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making. Mathematical and Computer Modelling, 51(1-2), 1-12.
    Wei, G. W. (2008). Maximizing deviation method for multiple attribute decision making in intuitionistic fuzzy setting. Knowledge-Based Systems, 21(8), 833-836.
    Wu, Z. B., & Chen, Y. H. (2007). The maximizing deviation method for group multiple attribute decision making under linguistic environment. Fuzzy Sets and Systems, 158(14), 1608-1617.
    Xie, X. L. L., & Beni, G. (1991). A validity measure for fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(8), 841-847.
    Xu, Z. S. (2007a). Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems, 15(6), 1179-1187.
    Xu, Z. S. (2007b). A method for multiple attribute decision making with incomplete weight information in linguistic setting. Knowledge-Based Systems, 20(8), 719-725.
    Xu, Z. S. (2009). Intuitionistic fuzzy hierarchical clustering algorithms. Journal of Systems Engineering and Electronics, 20(1), 90-97.
    Xu, Z. S. (2012). Intuitionistic Fuzzy Multiattribute Decision Making: An Interactive Method. IEEE Transactions on Fuzzy Systems, 20(3), 514-525.
    Yang, M. S., & Ko, C. H. (1996). On a class of fuzzy c-numbers clustering procedures for fuzzy data. Fuzzy Sets and Systems, 84(1), 49-60.
    Ye, J. (2011). Cosine similarity measures for intuitionistic fuzzy sets and their applications. Mathematical and Computer Modelling, 53(1-2), 91-97.
    Yeh, C. H. (2003). The selection of multiattribute decision making methods for scholarship student selection. International Journal of Selection and Assessment, 11(4), 289-296.
    Yue, Z. L. (2011). A method for group decision-making based on determining weights of decision makers using TOPSIS. Applied Mathematical Modelling, 35(4), 1926-1936.
    Yue, Z. L. (2012). Approach to group decision making based on determining the weights of experts by using projection method. Applied Mathematical Modelling, 36(7), 2896-2906.
    Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353.
    Zeleny, M., & Cochrane, J. L. (1982). Multiple Criteria Decision Making. New York: McGraw-Hill.
    Zhang, H. M., & Yu, L. Y. (2013). New distance measures between intuitionistic fuzzy sets and interval-valued fuzzy sets. Information Sciences, 245, 181-196.

    無法下載圖示 校內:2023-05-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE