簡易檢索 / 詳目顯示

研究生: 洪偉程
Hung, Wei-Cheng
論文名稱: 以0.07mm2實現之十二位元每秒二十億次取樣電流式數位類比轉換器
A 12-bit 2GS/s Current-Steering DAC in 0.07mm2
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 98
中文關鍵詞: 雙模組動態元件匹配數位歸零技術輸出阻抗補償電流源式數位類比轉換器
外文關鍵詞: dual-mode DEM, digital return-to-zero, output impedance compensation, current-steering, DAC
相關次數: 點閱:112下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個十二位元每秒二十億次取樣之電流源式數位類比轉換器設計,解決三個主要的非線性度來源,分別是電流源不匹配、輸出轉換非線性度及有限輸出阻抗,並達到高速高解析的特性。首先,對於電流源不匹配,隨機旋轉式二元權重選取和資料權重平均化這兩種不同的動態元件匹配演算法被採用來針對不同的應用降低不匹配誤差造成的諧波失真。其次,對電流單元採取減少電流開關及非疊接的調整來提升輸出轉換速度並降低轉換非線性度的影響。除此之外,採用重置式的數位歸零技術以進一步增加輸出轉換線性度。最後,對於有限輸出阻抗的問題,提出一個輸出阻抗補償電路來補償電流單元的非線性阻抗曲線。透過解決這些非線性度的來源,此數位類比轉換器在高取樣速率下仍表現優異。
    此電流源式數位類比轉換器之實現是採用TSMC 90奈米,1P9M互補金氧半導體製程,主動電路面積僅0.07平方毫米。量測結果顯示,此數位類比轉換器可達到在十億赫茲取樣頻率下從低頻到四億赫茲的SFDR均大於70dB,且效能指數和世界頂尖的作品相比均為最佳。

    In this thesis, a 12-bit 2GS/s current-steering DAC design is presented to overcome the three main nonlinearity sources, which are current source mismatch, output transition nonlinearity, and finite output impedance, and achieve high-speed high-resolution characteristic. Firstly, for the current source mismatch, two different dynamic element matching (DEM) algorithms, random rotation-based binary-weighted selection (RRBS) and data weighted averaging (DWA), are adopted to process the harmonic distortion tones caused by mismatch error for different applications. Secondly, reduced-switch and non-cascoded modifications of the current cells increase the output transition speed and decrease the influence of transition nonlinearity. In addition, a digital resetting return-to-zero (RTZ) is adopted to further enhance the output transition linearity. Finally, for the finite output impedance, an output impedance compensation circuit is proposed to compensate the nonlinear impedance curve of current cells. By dealing with these nonlinearity sources, this DAC performs excellent at high sampling rate.
    The current-steering DAC is fabricated in TSMC 90nm 1P9M CMOS technology with only 0.07mm2 of active area. The measurement results show that the DAC achieves >70dB SFDR from dc to 400MHz sampling at 1GHz and performs best in figure of merit (FOM) comparing to state-of-the-art works.

    摘要 I Abstract II Acknowledgements III Table of Contents IV List of Tables VII List of Figures VIII Chapter 1: Introduction 1 1.1 Motivation 1 1.2 Organization 3 Chapter 2: Fundamental of Nyquist-Rate DAC 4 2.1 Ideal DAC 5 2.2 Static Performances 6 2.3 Dynamic Performances 10 2.4 Zero-Order Hold Response 15 2.5 Architecture of Digital-to-Analog Converters 16 2.5.1 Resistor-String Based DAC 16 2.5.2 Binary-Weighted Resistor DAC 19 2.5.3 Charge-Redistribution DAC 23 2.5.4 Current-Steering DAC 24 Chapter 3: Techniques for Linearity Enhancement 25 3.1 Suppression of Mismatch Effect 26 3.1.1 Current Source Mismatch Effect 27 3.1.2 Dynamic Element Matching (DEM) 31 3.2 Reduction of Output Transition Nonlinearity 37 3.2.1 Acceleration of Output Transition Speed 37 3.2.2 Digital Resetting Return-to-Zero 42 3.3 Compensation of Finite Output Impedance 45 3.3.1 The Parallel Connection Effect 45 3.3.2 Output Impedance Compensation 48 Chapter 4: Circuit Design and Implementation 51 4.1 Circuit Design Details 51 4.1.1 Build-in Testing Circuits 53 4.1.2 DEM Algorithm 55 4.1.3 Switch Driver 56 4.1.4 Current Cell Array 58 4.1.5 Output Impedance Compensation Circuits 61 4.1.6 Clock Receiver and Buffer 64 4.2 Pre-layout Simulation Results 66 4.2.1 Intrinsic DAC 66 4.2.2 Current Cell with Reduced Current Switch 67 4.2.3 Current Cell without Cascode Transistor 68 4.2.4 Return-to-Zero Circuit 70 4.2.5 Output Impedance Compensation Circuit 71 4.3 Layout and Post-layout Simulation Results 73 4.3.1 Circuit Layout and Consideration 73 4.3.2 Simulation Results 76 4.3.3 Performance Summary and Comparison to State-of-the-Art 79 Chapter 5: Performance Measurements 81 5.1 Measurement Setup 81 5.2 PCB Design Consideration 82 5.3 Measurement Results 85 5.4 Performance Summary and Comparison 90 Chapter 6: Conclusion and Future Work 94 Reference 96

    [1] V. D. Bosch, M. Borremans, M. Steyaert, and W. Sansen, “A 10-bit 1-GSample/s Nyquist current-steering CMOS D/A converter,” IEEE J. Solid-State Circuits, vol. 36, no. 3, pp. 315–324, Mar. 2001.
    [2] J. Bastos, A. M. Marques, M. S. J. Steyaert, and W. Sansen, “A 12-bit intrinsic accuracy high-speed CMOS DAC,” IEEE J. Solid-State Circuits, vol. 33, no. 12, pp. 1959–1969, Dec. 1998.
    [3] P. Palmers and M. S. J. Steyaert, “A 10-bit 1.6-GS/s 27-mW current-steering D/A converter with 550-MHz 54-dB SFDR bandwidth in 130-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 11, pp. 2870–2879, Nov. 2010.
    [4] C.-H. Lin, F. M. L. van der Goes, J. R. Westra, J. Mulder, Y. Lin, E. Arslan, E. Ayranci, X. Liu, and K. Bult, “A 12 bit 2.9 GS/s DAC with IM3 >60 dBc beyond 1 GHz in 65 nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3285–3293, Dec. 2009.
    [5] W.-H. Tseng, C.-W. Fan, and J.-T. Wu, “A 12-bit 1.25-GS/s DAC in 90nm CMOS with >70 dB SFDR up to 500 MHz,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2845–2856, Dec. 2011.
    [6] A. R. Bugeja and B.-S. Song, “A self-trimming 14-b 100-MS/s CMOS DAC,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1841–1852, Dec. 2000.
    [7] M. P. Tiilikainen, “A 14-bit 1.8-V 20-mW 1-mm2 CMOS DAC,” IEEE J. Solid-State Circuits, vol. 36, no. 7, pp. 1144–1147, Jul. 2001.
    [8] D.-L. Shen, Y.-C. Lai, and T.-C. Lee, “A 10-bit binary-weighted DAC with digital background LMS calibration,” in Proc. IEEE Asian Solid-State Circuits Conf. (ASSCC), Nov. 2007, pp. 352–355.
    [9] J.-H. Chi, S.-H. Chu, and T.-H. Tsai, “A 1.8-V 12-bit 250 MS/s 25-mW self-calibrated DAC,” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2010, pp. 222–225.
    [10] D.-H. Lee, Y.-H. Lin, and T.-H. Kuo, “Nyquist-rate current-steering digital-to-analog converters with random multiple data-weighted averaging technique and QN rotated walk switching scheme,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1264–1268, Nov. 2006.
    [11] K. L. Chan, J. Zhu, and I. Galton, “A 150 MS/s 14-bit segmented DEM DAC with greater than 83 dB of SFDR across the Nyquist band,” in Proc. Symp. VLSI Circuits Dig. Tech. Papers, Jun. 2007, pp. 200–201.
    [12] D.-H. Lee, T.-H. Kuo, and K.-L. Wen, “Low-cost 14-bit current-steering DAC with a randomized thermometer-coding method,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 137–141, Feb. 2009.
    [13] W.-T. Lin, and T.-H. Kuo, “A Compact Dynamic-Performance-Improved Current-Steering DAC With Random Rotation-Based Binary-Weighted Selection,” IEEE J. Solid-State Circuits, vol. 47, no. 2, pp. 444–453, Feb. 2012.
    [14] W.-T. Lin and T.-H. Kuo, “A 12b 1.6GS/s 40mW DAC with >70dB SFDR over Entire Nyquist Bandwidth,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2013, pp. 474–475.
    [15] A. R. Bugeja, and B.-S. Song, “A Self-Trimming 14-b 100-MS/s CMOS DAC,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1841–1852, Dec. 2000.
    [16] Q. Huang, A. Francese, C. Martelli, and J. Nielsen, “A 200MS/s 14b 97mW DAC in 0.18μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2004, pp. 364–532.
    [17] AD9772: 14-Bit 150 MSPS TxDAC with 2x Interpolation Filter. Analog Device Inc., 1999.
    [18] K.-C. Kuo, and C.-W. Wo, “A Switching Sequence for Linear Gradient Error Compensation in the DAC Design,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 8, pp. 502–506, Aug. 2011.
    [19] M. J. M. Pelgrom, C. J. Duinmaijer, and A. P. G. Welbers, “Matching Properties of MOS Transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, pp. 1433–1440, Oct. 1989.
    [20] I. Galton, “Why Dynamic-Element-Matching DACs Work,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 2, pp. 69–74, Feb. 2010.
    [21] M.-J. Choe, K.-H. Baek, and M. Teshome, “A 1.6-GS/s 12-bit Return-to-Zero GaAs RF DAC for Multiple Nyquist Operation,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2456–2468, Dec. 2005.
    [22] A. Van den Bosch, M. S. J. Steyaert, and W. Sansen, “Solving static and dynamic performance limitations for high-speed D/A converters,” in Analog Circuit Design: Scalable Analog Circuit Design, High-Speed D/A Converters, RF Power Amplifiers. Norwell, MA: Kluwer, 2002, pp. 189–210.
    [23] T. Chen, P. Geens, G. van der Plas, W. Dehaene, and G. Gielen, “A 14-bit 130-MHz CMOS current-steering DAC with adjustable INL,” in Proc. IEEE Eur. Solid-State Circuits Conf. (ESSCIRC), Sep. 2004, pp. 167–170.
    [24] M. Clara, W. Klatzer, B. Seger, A. D. Giandomenico, and L. Gori, “A 1.5 V 200MS/s 13 b 25 mWDAC with randomized nested background calibration in 0.13 mCMOS,” in IEEE Solid-State Circuits Conf.Dig. Tech. Papers, 2007, pp. 250–251.

    下載圖示 校內:2016-08-21公開
    校外:2016-08-21公開
    QR CODE