| 研究生: |
吳丞璵 Wu, Cheng-Yu |
|---|---|
| 論文名稱: |
行動通訊應用程式的使用行為意圖、滿意度對品牌偏好的影響 The Effects of Behavioral Intention to Use Mobile App and Satisfaction on Brand Preference |
| 指導教授: |
康信鴻
Kang, Hsin-Hong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 科技準備度 、資訊系統成功模型 、品牌偏好 、行動通訊應用程式 |
| 外文關鍵詞: | Technology readiness, Information systems success model, Brand preference, Mobile application |
| 相關次數: | 點閱:113 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在智慧型手機及行動網路的搭配下,民眾利用手機App 來完成工作與生活上的任務形成一股趨勢,商家開始陸續與應用程式開發商進行合作,開發商家專屬的App,進軍行動服務市場。過去許多文獻只針對新科技的接受行為與新資訊系統的使用成效作分別地探討。本研究除了一方面針對新興的App 市場,利用科技準備度與資訊系統成功模型的結合來探討新科技的應用,另一方面還針對在使用行為意圖與手機App 滿意度上結合品牌偏好作進一步的消費者行為探討。
本研究目的在於探討對於有提供手機App 的商家品牌,消費者是否對商家產生印象以及在消費上具有品牌偏好性。研究架構以科技準備度與手機App
特性來探討消費者使用手機App 的行為意圖,並以資訊系統成功模型探討手機App 的滿意度,最後本研究採用複迴歸分析法探討使用行為意圖與滿意度對品牌偏好的影響以及各變數之間的關聯性。
實證結果顯示在科技準備度對使用行為意圖上,樂觀性、創新性與不適應性對使用行為意圖有正向影響,不安全性對使用行為意圖有負向影響。除此之外,手機App 特性對使用行為意圖有正向影響。另外,在資訊品質、系統品質與服務品質上,皆對手機App 的滿意度有正向影響。最後,本研究模型驗證了影響品牌偏好可由使用行為意圖與滿意度組成,並且使用行為意圖與滿意度皆對品牌偏好有正向影響效果。
As mobile App have become a trend that many people complete the work and life tasks by using the mobile App, businesses begin to cooperate with application developers to develop their own App, and move into the mobile services market. The majority of previous studies only explored the acceptable behavior of new technology and the using effectiveness of new information system separately. This study, on the one hand, with the emerging of App market, uses a combination of technology readiness and information systems success model to explore the application of new technology. On the other hand, we combine brand preference with behavioral intention to use and mobile App satisfaction to the further exploration of consumer behavior.
The objective of this study is to investigate whether consumer has a good impression and spending regarding the business brands that provide Apps. In the framework, this study adopts technology readiness and mobile App characteristics to explore the consumer intention to use mobile App, and use information systems success model to explore the mobile App satisfaction. In the end, this study adopts multiple regression analysis to explore the effects on brand preference from behavior intention to use and mobile App satisfaction, and discuss the correlation between each variable.
The empirical results of this study presents in the correlation between the factors of technology readiness and behavioral intention to use. Optimism, innovativeness and discomfort have positive effects, but insecurity has a negative effect. In addition, mobile App characteristics have a positive effect on behavioral intention to use. Also, information quality, system quality and service quality all have positive effects on mobile App satisfaction. Finally, this model validates influencing brand preference can be formed by behavioral intention to use and mobile App satisfaction which have positive effects on the brand preference.
Chen, L., Gillenson, M. L., & Sherrell, D. L. (2002).
Enticing online consumers: an extended technology
acceptance perspective. Information & Management,
39(8),705-719.
Clarke, I. (2001). Emerging value propositions for m-
commerce. Journal of Business Strategies, 18(2), 133-148.
Davis, F. D. (1989). Perceived usefulness, perceived ease
of use, and user acceptance of information technology.
MIS Quarterly, 319-340.
DeLone, W. H., & McLean, E. R. (1992). Information systems
success: The quest for the dependent variable.
Information Systems Research, 3(1), 60-95.
Delone, W. H., & McLean, E. R. (2003). The DeLone and
McLean model of information systems success: A ten-year
update. Journal of Management Information Systems, 19(4),
9-30.
Delone, W. H., & Mclean, E. R. (2004). Measuring e-commerce
success: Applying the DeLone & McLean information systems
success model. International Journal of Electronic
Commerce, 9(1), 31-47.
Fishbein, M. (1963). An investigation of the relationship
between beliefs about an object and the attitude toward
that object. Human Relations, 16(3), 233-239.
Gartner. (2011). Gartner Identifies Top 10 Commercial
Business Applications for Tablet Devices, Retrieved
November 14-17, 2011, from the world wide website:
http://www.gartner.com/it/products/newsroom/index.jsp.
Giaglis, G. M., Hlupic, V., de Vreede, G. J., & Verbraeck,
A. (2005). Synchronous design of business processes and
information systems using dynamic process modelling.
Business Process Management Journal, 11(5), 488-500.
Goggin, G. (2011). Ubiquitous apps: politics of openness in
global mobile cultures. Digital Creativity, 22(3), 148-
159.
Hair Jr, J. F., Celsi, M. W., Money, A. H., Samouel, P., &
Page, M. J. (2011). Essentials of business research
methods: ME Sharpe Inc.
Han, J., & Mills, J. (2006). The use of problematic
integration theory to assess destination online promotion
activities: the case of Australia. com in the United
States market. Journal of Travel & Tourism Marketing, 20
(3/4), 93-105.
Hellier, P. K., Geursen, G. M., Carr, R. A., & Rickard, J.
A. (2003). Customer repurchase intention: A general
structural equation model. European Journal of Marketing,
37(11/12), 1762-1800.
Higie, R. A., & Sewall, M. A. (1991). Using recall and
brand preference to evaluate advertising effectiveness.
Journal of Advertising Research, 31(2), 56-63.
Jamal, A., & Goode, M. M. H. (2001). Consumers and brands:
a study of the impact of self-image congruence on brand
preference and satisfaction. Marketing Intelligence &
Planning, 19(7), 482-492.
Kleijnen, M., De Ruyter, K., & Wetzels, M. (2007). An
assessment of value creation in mobile service delivery
and the moderating role of time consciousness. Journal of
Retailing, 83(1), 33-46.
Kohli, R., Devaraj, S., & Mahmood, M. A. (2004).
Understanding determinants of online consumer
satisfaction: A decision process perspective. Journal of
Management Information Systems, 21(1), 115-136.
Kuo, Y. F., Wu, C. M., & Deng, W. J. (2009). The
relationships among service quality, perceived value,
customer satisfaction, and post-purchase intention in
mobile value-added services. Computers in Human Behavior,
25(4), 887-896.
Lam, S. Y., Chiang, J., & Parasuraman, A. (2008). The
effects of the dimensions of technology readiness on
technology acceptance: An empirical analysis. Journal of
Interactive Marketing, 22(4), 19-39.
Lee, K. C., & Chung, N. (2009). Understanding factors
affecting trust in and satisfaction with mobile banking
in Korea: A modified DeLone and McLean’s model
perspective. Interacting with Computers, 21(5), 385-392.
Liljander, V., Gillberg, F., Gummerus, J., & van Riel, A.
(2006). Technology readiness and the evaluation and
adoption of self-service technologies. Journal of
Retailing and Consumer Services, 13(3), 177-191.
Lin, J. S. C., & Hsieh, P. L. (2007). The influence of
technology readiness on satisfaction and behavioral
intentions toward self-service technologies. Computers in
Human Behavior, 23(3), 1597-1615.
Lin, R. (2007). Multivariate analysis: SPSS operation and
application (Rev. ed.). Taipei, Taiwan: Best-wise.
Mahatanankoon, P., Wen, H. J., & Lim, B. (2005). Consumer-
based m-commerce: exploring consumer perception of mobile
applications. Computer Standards & Interfaces, 27(4), 347-
357.
McKinney, V., & Yoon, K. (2002). The measurement of web-
customer satisfaction: An expectation and disconfirmation
approach. Information Systems Research, 13(3), 296-315.
Meuter, M. L., Bitner, M. J., Ostrom, A. L., & Brown, S. W.
(2005). Choosing among alternative service delivery
modes: An investigation of customer trial of self-service
technologies. Journal of Marketing, 61-83.
Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a
World-Wide-Web context. Information & Management, 38(4),
217-230.
Nielsen. (2011). According to Nielsen Research, Games Most
Popular Mobile App Category in US, Retrieved July 7,
2011, from the world wide website:
http://www.androidguys.com/2011/2007/2007/nielsen-
research-games-popular-mobile-app-category/.
Okazaki, S. (2005). New perspectives on m-commerce
research. Journal of Electronic Commerce Research, 6(3),
160-164.
Oliver, R. L. (1999). Whence consumer loyalty? the Journal
of Marketing, 33-44.
Parasuraman, A. (2000). Technology readiness index (TRI).
Journal of Service Research, 2(4), 307-320.
Pitt, L. F., Watson, R. T., & Kavan, C. B. (1995). Service
quality: a measure of information systems effectiveness.
MIS Quarterly, 173-187.
Punj, G. N., & Hillyer, C. L. (2004). A cognitive model of
customer-based brand equity for frequently purchased
products: Conceptual framework and empirical results.
Journal of Consumer Psychology, 14(1), 124-131.
Rao, S., & Troshani, I. (2007). A conceptual framework and
propositions for the acceptance of mobile services.
Journal of Theoretical and Applied Electronic Commerce
Research, 2(2), 61-73.
Serenko, A., & Bontis, N. (2004). A model of user adoption
of mobile portals. Quarterly Journal of Electronic
Commerce, 4(1), 69-98.
Tsalgatidou, A., & Pitoura, E. (2001). Business models and
transactions in mobile electronic commerce: requirements
and properties. Computer Networks, 37(2), 221-236.
Tsikriktsis, N. (2004). A technology readiness-based
taxonomy of customers. Journal of Service Research, 7(1),
42-52.
Varnali, K., & Toker, A. (2010). Mobile marketing research:
The-state-of-the-art. International Journal of
Information Management, 30(2), 144-151.
Walczuch, R., Lemmink, J., & Streukens, S. (2007). The
effect of service employees’ technology readiness on
technology acceptance. Information & Management, 44(2),
206-215.
Wang, Y. S., & Liao, Y. W. (2007). The conceptualization
and measurement of m-commerce user satisfaction.
Computers in Human Behavior, 23(1), 381-398.
Yu, J., Ha, I., Choi, M., & Rho, J. (2005). Extending the
TAM for a t-commerce. Information & Management, 42(7),
965-976.
Zhang, X., & Prybutok, V. R. (2005). A consumer perspective
of e-service quality. Engineering Management, IEEE
Transactions on, 52(4), 461-477.