| 研究生: |
周明達 Chou, Min-Da |
|---|---|
| 論文名稱: |
SrSi2 掺釔的熱電性質之研究 Effects of Y substitution on the thermoelectric performance of SrSi2 |
| 指導教授: |
呂欽山
Lue, C.S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 矽化物 、熱電材料 |
| 外文關鍵詞: | Thermoelectrics, SrSi2 |
| 相關次數: | 點閱:48 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文是研究鹼土金屬鍶Sr 的矽化物SrSi2,藉由摻雜Y 和Sr 的比
例而形成Sr1-xYxSi2(x=0 0.03 0.05 0.08 0.1 0.15)。為了了解其熱電性質,我
們將這一系列的合金置於溫度10~300K 量測,測量合金的電阻率、熱導率
以及Seebeck coefficient。由實驗數據得知,絕大部分的熱導是由晶格熱導
率(κL)所提供的。並且發現晶格熱導率隨著Y/ Sr 比例的增加而減少。這是
因為Y 的取代而導致聲子和晶格間的無序散射效應增加。而電阻率在10~
300K 溫度範圍下,有類似半導體的電阻率隨溫度提高而下降的行為趨勢。
且在摻雜濃度x=0.08,電阻率有顯著的下降。在Seebeck coefficient 量測
上,發現溫度在80K 左右、摻雜濃度x=0.08 量得S=220μV/K 左右。
有了電阻率的顯著下降,以及Seebeck coefficient 的大幅提升,我們去
計算熱電優值 (figure of merit) ZT=S2T/κρ,可得到樣品Sr0.92Y0.08Si2 在室溫
300K 得ZT 值 為0.4 左右。比起SrSi2 樣品本身(ZT=0.09 溫度417K)的熱
電優值大了一個數量級。
我們也對溫度範圍300K~800K 內由樣品Sr0.92Y0.08Si2 的電阻率ρ 及
Seebeck coefficient 作了模擬,在溫度380K 左右得到ZT 最大值為0. 417 左
右。
We report the results of the temperature-dependent electrical resistivity,
thermal conductivity, as well as Seebeck coefficient in Sr1-xYxSi2 with x ≤ 0.15.
The thermoelectric performance is improved and optimized with x=0.08. Ingots
were prepared with an arc-melting procedure and then annealed under 800℃ for
10 days.
Upon substituting Y onto the Sr sites, the electrical resistivity exhibit
semiconducting behavior and the room-temperature electrical resistivity
decreases with increasing the Y content for x ≤ 0.08. The thermal conductivity
also reduces with increasing the Y concentration. The Seebeck coefficient
exhibits a substantial increase and a maximum of about 220 μV/K at around 80
K has been found for x = 0.08
The figure of merit (ZT) is characterized by the Seebeck coefficient (S), the
thermal conductivity (κ) and the electrical resistivity (ρ) as ZT=S2T/κρ. These
promising effects lead to a significant enhancement in the thermoelectric
performance. A room-temperature ZT value of approximately 0.4 is achieved for
Sr0.92Y0.08Si2, about one order of magnitude larger than that of stoichiometric
SrSi2. Such a result has been associated with the effects of electron doping and
positive chemical pressure on the system.
【1】C. S. Lue, Y. K. Kuo, C.L. Huang, and W.J. Lai, Phys. Rev. B 69, 125111
(2004)
【2】Y. K. Kuo, K. M. Sivakumar, S. J. Huang, and C. S. Lue, J. Appl. Phys. 98,
123510 (2005)
【3】M. Imai et al., Appl. Phys. Lett. 86, 032102(2005)
【4】K. Hashimoto et al., J. Appl. Phys. 102, 063703 (2007)
【5】M. Imai and T. Kikegawa, Chem. Mater. 15, 2543 (2003)
【6】J. Evers, J. Solid State Chem. 24, 199 (1978)
【7】C. Kittel , Introduction to Solid State Physics, 7th edited (1996) Ch4、5、6
【8】F. J. Disalvo, Science 285,703 (1999)
【9】B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction 3rd edition (2001)
【10】Y. Imai and A. Watanabe, Intermetallics 10 333 (2002)
【11】Y. Imai and A. Watanabe, Intermetallics 14 666 (2006)
【12】S. Brutti, D. Nguyen Manh, and D. G. Pettifor, Intermetallics 14 1472(2006)
【13】M. Imai et al., Intermetallics 15 956 (2007)
【14】M. Imai et al., Appl. Phys. Lett. 86, 032102 (2005)
【15】CRC Handbook of Thermoelectrics ,edited by D.M. Rowe (CRC press, Boca
Raton, FL,1995), p. 211
【16】M. Zhou et al., J. Appl. Phys. 101, 113714 (2007)
【17】D. -Y. Chung, K.-S. Choi, L. Iordanidis, J. L. Schindler, P. W. Brazis, C. R.
Kannewurf, B. Chen, S. Hu, C. Uher, and M. G. Kanatzidis, Chem. Mater. 9,
3060 (1997)
【18】E. Skoug, C. Zhou, Y. Pei, and D. T. Morelli, Appl. Phys. Lett. 94, 022115
(2009)
【19】S. V. Ovsyannikov, V. V. Shchennikov, G. V. Vorontsov, A. Y. Manakov, A.
Y. Likhacheva, and V. A. Kulbachinskii, J. Appl. Phys. 104, 053713 (2008)