| 研究生: |
楊尚儒 Yang, Shang-Ju |
|---|---|
| 論文名稱: |
傅式轉換紅外光譜研究:2-環己烯-1-酮和甲基碘在二氧化鈦粉末表面上的吸附與光反應 FTIR Study of Adsorption and Photoreaction of 2-Cyclohexen-1-one and Methyl Iodide on Powdered TiO2 |
| 指導教授: |
林榮良
Lin, Jong-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 二氧化鈦 、傅式轉換紅外光譜儀 、光反應 、催化 |
| 外文關鍵詞: | FTIR, TiO2, catalysis, photoreaction |
| 相關次數: | 點閱:59 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文是在真空系統中,利用傅式轉換紅外光譜儀(FTIR)研究2-環己烯-1-酮和甲基碘在二氧化鈦表面上的吸附及光化學反應。
2-環己烯-1-酮的研究所用的二氧化鈦是購自Degussa,商品代號為P-25,具有70 % anatase結構和30 % rutile結構的混合物,大約有~50 m2/g的表面積。2-環己烯-1-酮與35 oC的TiO2接觸時是以分子性(不會分解)吸附。吸附相的2-環己烯-1-酮在150 oC會斷裂C-H鍵斷裂形成苯氧基吸附於表面。TiO2上的2-環己烯-1-酮於有氧下受UV光照射後,分解形成HCOO(a)、CO32-(a)、HCO3-(a)、CO2(g)和H2O(a)光反應產物。預吸附的水能提升2-環己烯-1-酮的光反應效率。
1980年代,Haruta博士開始發表了有關覆載金奈米粒子的二氧化鈦的研究,展現了金奈米粒子在催化上的活性。我們探討自己製備的覆載金奈米粒子的二氧化鈦奈米線對CH3I氧化的催化性質。CH3I與TiO2奈米線接觸後,會分子性吸附(CH3I(a))和熱分解形成甲氧基(CH3O(a))。TiO2奈米線在400 nm光線照射下能分解CH3I而形成甲氧基和甲酸根。含金的TiO2能增加CH3I的光分解和甲酸根的生成。
The adsorption and photoreactions of 2-cyclohexen-1-one and methyl on powered TiO2 have been studied, using Fourier-transformed infrared spectroscopy.
Commercially available Degussa P-25 TiO2 (anatase 70 %, rutile 30 %, ~50 m2/g) was used for the 2-cyclohexen-1-one study. 2-cyclohexen-1-one is adsorbed molecularly on TiO2 surface at 35 oC. Upon increasing the temperature to 150 oC, the adsorbed 2-cyclohexen-1-one undergoes C-H bond cleavage, forming phenoxy groups on the surface. In the 2-cyclohexen-1-one photoreactions catalyzed by TiO2 under UV irradiation in the presence of O2, HCOO(a), CO32-(a), HCO3-(a), CO2(g), and H2O(a) are generated. Preadsorbed H2O can increase the photoreaction efficiency.
In 1980’s, Dr. Haruta has begun to issue the reports about using gold nanoparticles supported on titanium dioxide with an irregular particle shape. These studies showed the catalytic activity of gold nanoparticles. We report the catalytic activity of titanium dioxide nanowires loaded with gold nanoparticles toward CH3I oxidation. CH3I is adsorbed molecularly or dissociatively to form methoxy groups on TiO2 nanowires. CH3I on TiO nanowires decomposes to form CH3O(a) and HCOO(a) under photoirradiation at 400 nm. The CH3I photoreactions are promoted for the TiO2 nanowires loaded with gold nanoparticles.
1.S. J. Gregg and K. S. Sing, Adsorption, Surface area and Porosity., Academic Press, New York, 1967.
2.G. A. Somorjai, Introduction to surface chemistry and catalysis, Wiley & Sons, New York, p1, 1994.
3.J. C. Vickerman, Surface Analysis, Wiley & Sons, New York, p2, 1997.
4.P. W. Atkins, Physical Chemistry, Oxford University, p997, 1994.
5.R. A. Alberty and R. J. Silbey, J. Physical Chemistry, John Wisely & Sons, New York, p839-840, 1995.
6.G. A. Somorjai, Introduction to surface chemistry and catalysis, Wiley & Sons, New Youk, p443, 1994.
7.卓靜哲,何瑞文,黃守仁,施良垣,蘇世剛,物理化學,三民書局,台南市,第507-508頁,1994年。
8.R. A. Alberty and R. J. Silbey, Physical Chemistry, John Wiely & Sons, New York, p838, 1995.
9.A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., Chem. Rev. 95, 735, 1995.
10.A. Fujishima and K. Honda, Nature 37, 238, 1972.
11.A. J. Bard, J. Phys. Chem. 86, 172, 1982.
12.A. J. Bard, Science 207, 139, 1980.
13.W. Wu, J. M. Herrman, and P. Pichat, Catal. 3, 73, 1989.
14.S. N. Franks and A. J. Bard, J. Phys. Chem. 81, 1484, 1977.
15.J. K. Leland and A. J. Bard, J. Phys. Chem. 91, 5076, 1987.
16.Q. S. Li, Chem. Lett. 135, 321, 1983.
17.A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., Chem. Rev. 95, 735, 1995.
18.J. Fan and J. T. Yates, Jr., J. Am. Chem. Soc. 118, 4686, 1996.
19.M. A. Fox and M. T. Dulay, Chem. Rev. 93, 341, 1993.
20.J. K. Burdett, T. Hughbands, J. M. Gordon, J. W. Richardson, Jr., and J. V. Smith, J. Am. Chem. Soc. 109, 3639, 1987.
21.J. Augustynski, Electrochim. Acta 38, 43, 1993.
22.L. Cao, F.–J. Spiess, A. Huang, and S. L. Suib, J. Phys. Chem. B 103, 2912, 1999.
23.D. F. Ollis, E. Pelizzetti, and N. Serpone, Environ. Sci. Technol. 25, 1522, 1991.
24.O. Legrini, E. Oliveros, and A. M. Braun, Chem. Rev. 93, 671, 1993.
25.K.-C. G. Low, S. R. McEvoy, and R. W. Matthews, Environ. Sci. Technol. 25, 460, 1991.
26.A. Wold, Chem. Mater. 5, 280, 1993.
27.M. Scgiavello, Ed. Photocatalysis and Environment, Kluwer Academic Publishers, Dordrecht, 1988.
28.J. Fan and J. T. Yates, Jr., J. Phys. Chem. 98, 10621, 1994.
29.C.-C. Chuang, J.-S. Shiu, and J.-L. Lin, Phys. Chem. Chem. Phys. 2, 2629, 2000.
30.J. C. S. Wong, A. Linsebigler, G. Lu, J. Fan, and J. T. Yates, Jr., J. Phys. Chem. 99, 335, 1995.
31.P. Bou , C. N. Tam, J. Sopková, and F. R. Trouw, J. Chem. Phys. 108(1), 351, 1998.
32.C. N. Rusu and J. T. Yates, J. Phys. Chem. B 104, 1729-1737, 2000.
33.J. Fan and J. T. Yates, Jr., J. Phys. Chem. 98, 10621, 1994.
34.P. Hohenberg and W. Kohn, Phys. Rev. 136, B864, 1964.
35.W. Kohn and L. J. Sham, Phys. Rev. 140, A1133, 1965.
36.Acros Organics MSDS
37.R. M. Wehmeyer and R. D. Rieke, J. Org. Chem. 52, 5056-5057, 1987.
38.N. J. Pienta and J. E. McKimmey, J. Am. Chem. Soc. 104, 5501, 1982.
39.M. S. Mubarak, M. Pagel, L. M. Marcus, and D. G. Peters, J. Org. Chem. 63, 1319, 1998.
40.D. Weir and J. C. Scaiano, Can. J. Chem. 66, 2595, 1988.
41.N. J. Pienta, J. Am. Chem. Soc. 106, 2704-2705, 1984.
42.D. I. Schuster, R. Bonneau, D. A. Dunn, J. M. Rao, and J. Joussot-Dubien, J. Am. Chem. Soc. 106, 2706-2707, 1984.
43.D. I. Schuster and A. M. Insogna, J. Org. Chem. 56, 1879-1882, 1991.
44.D. I. Schuster, The Chemistry of Enones, Patai, S., Rappoport,Z., Eds., John Wiley and Sons: Ltd.: Chichester, U. K., pp623-756, 1989.
45.W.-C. Wu, S.-J. Yang, C.-H. Ho, Y.-S. Lin, L.-F. Liao, and J.-L. Lin, J. Phys. Chem. B 110(19), 9627-9631, 2006.
46.G. C. Bond and D. T. Thompson, Catal. Rev.-Sci. Eng. 41, 319, 1999.
47.M. Haruta, Catal. Today 36, 153, 1997.
48.M. Valden, S. Pak, X. Lai, and D. W. Goodman, Catal. Lett. 56, 7, 1998.
49.國立台灣大學化學研究所 紀育珊碩士論文。
50.N. N. Greenwood and A. Earnshaw, Chemistry of the Elements Pergamon, Oxford, 1984.
51.G. A. Somorjai, Introduction to Surface Chemistry and Catalysis Wiley Interscience, New York, 1994.
52.M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 2, 405, 1987.
53.M. Haruta, T. Kobayashi, S. Iijima, and F. Delannay, Proc. 9th Int. Congr. Catal., Calgary 1206, 1988.
54.M. Haruta, K. Saika, T. Kobayashi, S. Tsubota, and Y. Nakahara, Chem. Express 3, 159, 1988.
55.G. Dagan and M. Tomkiewics, J. Phys. Chem. 97, 12651, 1993.
56.U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissö, J. Salbeck, H. Spreitzer, and M. Graetzel, Nature 395, 583, 1998.
57.S. Matsuda and A. Kato, Appl. Catal. 8, 149, 1983.
58.A. M. Azad, L. B. Younkman, and S. A. Akbar, J. Am. Ceram. Soc. 77, 481, 1994.
59.B. Wen, C. Liu and Y. Lin, J. Phys. Chem. B 109, 12372, 2005.
60.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir 14, 3160, 1998.
61.N. Bao, L. Shen, X. Feng, and X. Lu, J. Am. Ceram. Soc. 87, 326, 2004.
62.G.-L. Li, G.-H. Wang, and J.-M. Hong, Mater. Res. Bull. 34, 2341, 1999.
63.Y. Fujiki and N. Ohta, Yogyo Kyokaishi 88, 111, 1980.
64.C. J. Pouchert, The Aldrich Library of FT-IR Spectra; 1st ed., Aldrich Chemical Co.: Milwaukee, 1985.
65.K. Noack and R. N. Jones, Can. J. Chem. 39, 2201, 1961.
66.W.-C. Wu, L.-F. Liao, C.-F. Lien, and J.-L. Lin, Phys. Chem. Chem. Phys. 3, 4456, 2001.
67.L.-F. Liao, W.-C. Wu, C.-Y. Chen, and J.-L. Lin, J Phys. Chem. B 105, 7678, 2001.
68.G. Busca, J. Lamotte, J.-C. Lavalley, and V. Lorenzelli, J. Am. Chem. Soc. 109, 5197, 1987.
69.W.-C. Wu, C.-C. Chuang, and J.-L Lin, J. Phys. Chem. B 104, 8719, 2000.
70.W.-C. Wu, L.-F. Liao, C.-C. Chuang, and J.-L. Lin, J. Catal. 195, 416, 2000.
71.L.-F. Liao, C.-F. Lien, D.-L. Shieh, M.-T. Chen, and J.-L. Lin, J. Phys. Chem. B 106, 11240, 2002.
72.A. C.-C. Chang, S. S.-C. Chuang, M. Gray, and Y. Soong, Energy Fuels 17, 468, 2003.
73.R. A. Khatri, S. S. C. Chuang, Y. Soong, and M. Gray, Ind. Eng. Chem. Res. 44, 3702, 2005.
74.S. J. Teichner, Appl. Catal., 123, 57, 1994.
75.S. J. Teichner, Appl. Catal., 123, 89, 1995.
76.J. G. Ekerdt, J. Catal. 87, 381, 1984.
77.S. J. Teichner, Appl. Catal. 112, 219, 1994.
78.A. T. Bell, J. Catal., 172, 222, 1997.
79.T. Onishi, J. Chem. Soc. Faraday Trans., 84, 511, 1988.
80.G. Blyholder, Proc. Int. Congr. Catal., 1964.
81.W. Hertl, Langmuir, 5, 96, 1989.
82.E. Guglielminotti, Langmuir, 6, 1455, 1990.
83.D. Bianchi, Appl. Catal. A, 105, 223, 1993.
84.J. G. Ekerdt, J. Catal., 90, 17, 1984.
85.F. Boccuzzi and A. Chiorino, J. Phys. Chem. 100, 3617, 1996.
86.M. Anpo, K. Chiba, M. Tomonari, S. Coluccia, M. Che, and M. A. Fox, Bull. Chem. Soc. Jpn. 64, 543, 1991.
87.K. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B 104, 4934, 2000.
88.M. A. Fox and M. T. Dulay, Chem Rev. 93, 341, 1993.
89.M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95, 69, 1995.
90.S. Horikoshi, H. Hidaka, and N. Serpone, Chem. phys. lett. 376, 475, 2003.
91.A. J. Nozik, D. S. Boudreaux, R. R. Chance, and F. Williams, Interfacial Photoprocesses: Energy Conversion and Synthesis; AmericanChemical Society: Washington, DC, 1980; Chapter 9.
92.F. Williams and A. J. Nozik, Nature 271, 137, 1978.
93.T. Sakata, T. Kawai, and K. Hashimoto, J. Phys. Chem. 88, 2344, 1984.
94.N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press Inc., CA, 1990.
95.K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley and Sons, New York, 1986.
96.E. Spinner, and J. E. Rowe, Aust. J. Chem. 32, 481, 1979.
97.J. C.-S. Wong, A. Linsebigler, G. Lu, J. Fan, and J. Yates, J. Phys. Chem. 99(1), 335, 1995.
98.O. I. Micic, Y. Zhang, K. R. Cromack, A. D. Trifunac, and M. C. Thurnauer, J. Phys. Chem. 97, 13284, 1993.
99.C. Su, J.-C. Yeh, C.-C. Chen, J.-C. Lin, and J.-L. Lin, J. Catal. 194, 45, 2000.
100.A. Paul and B. E. Bent, J. Catal. 147, 264, 1994.