簡易檢索 / 詳目顯示

研究生: 楊尚儒
Yang, Shang-Ju
論文名稱: 傅式轉換紅外光譜研究:2-環己烯-1-酮和甲基碘在二氧化鈦粉末表面上的吸附與光反應
FTIR Study of Adsorption and Photoreaction of 2-Cyclohexen-1-one and Methyl Iodide on Powdered TiO2
指導教授: 林榮良
Lin, Jong-Liang
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 89
中文關鍵詞: 二氧化鈦傅式轉換紅外光譜儀光反應催化
外文關鍵詞: FTIR, TiO2, catalysis, photoreaction
相關次數: 點閱:59下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文是在真空系統中,利用傅式轉換紅外光譜儀(FTIR)研究2-環己烯-1-酮和甲基碘在二氧化鈦表面上的吸附及光化學反應。
    2-環己烯-1-酮的研究所用的二氧化鈦是購自Degussa,商品代號為P-25,具有70 % anatase結構和30 % rutile結構的混合物,大約有~50 m2/g的表面積。2-環己烯-1-酮與35 oC的TiO2接觸時是以分子性(不會分解)吸附。吸附相的2-環己烯-1-酮在150 oC會斷裂C-H鍵斷裂形成苯氧基吸附於表面。TiO2上的2-環己烯-1-酮於有氧下受UV光照射後,分解形成HCOO(a)、CO32-(a)、HCO3-(a)、CO2(g)和H2O(a)光反應產物。預吸附的水能提升2-環己烯-1-酮的光反應效率。
    1980年代,Haruta博士開始發表了有關覆載金奈米粒子的二氧化鈦的研究,展現了金奈米粒子在催化上的活性。我們探討自己製備的覆載金奈米粒子的二氧化鈦奈米線對CH3I氧化的催化性質。CH3I與TiO2奈米線接觸後,會分子性吸附(CH3I(a))和熱分解形成甲氧基(CH3O(a))。TiO2奈米線在400 nm光線照射下能分解CH3I而形成甲氧基和甲酸根。含金的TiO2能增加CH3I的光分解和甲酸根的生成。

    The adsorption and photoreactions of 2-cyclohexen-1-one and methyl on powered TiO2 have been studied, using Fourier-transformed infrared spectroscopy.
    Commercially available Degussa P-25 TiO2 (anatase 70 %, rutile 30 %, ~50 m2/g) was used for the 2-cyclohexen-1-one study. 2-cyclohexen-1-one is adsorbed molecularly on TiO2 surface at 35 oC. Upon increasing the temperature to 150 oC, the adsorbed 2-cyclohexen-1-one undergoes C-H bond cleavage, forming phenoxy groups on the surface. In the 2-cyclohexen-1-one photoreactions catalyzed by TiO2 under UV irradiation in the presence of O2, HCOO(a), CO32-(a), HCO3-(a), CO2(g), and H2O(a) are generated. Preadsorbed H2O can increase the photoreaction efficiency.
    In 1980’s, Dr. Haruta has begun to issue the reports about using gold nanoparticles supported on titanium dioxide with an irregular particle shape. These studies showed the catalytic activity of gold nanoparticles. We report the catalytic activity of titanium dioxide nanowires loaded with gold nanoparticles toward CH3I oxidation. CH3I is adsorbed molecularly or dissociatively to form methoxy groups on TiO2 nanowires. CH3I on TiO nanowires decomposes to form CH3O(a) and HCOO(a) under photoirradiation at 400 nm. The CH3I photoreactions are promoted for the TiO2 nanowires loaded with gold nanoparticles.

    目錄 第一章 緒論……………………………………………1 1-1表面科學……………………………………………1 1-1-1表面的定義…………………………………………2 1-1-2表面催化…………………………………………………2 1-1-3表面吸附…………………………………………………4 1-2 TiO2光催化……………………………………………………6 1-2-1光激發………………………………………………………6 1-2-2 TiO2光催化的起源………………………………………9 1-2-3 TiO2光催化原理…………………………………………9 1-2-4載子捕捉………………………………………………11 1-3 TiO2晶體結構……………………………………………12 1-4 TiO2光催化反應的發展與研究動機……………………………13 第二章 實驗系統及實驗方法…………………………………………16 2-1實驗系統概述…………………………………………………16 2-1-1儀器………………………………………………………17 2-1-2藥品………………………………………………………18 2-2傅氏轉換紅外線光譜系統………………………………………19 2-2-1光源………………………………………………………19 2-2-2偵檢器……………………………………………………19 2-3汞燈系統(Mercury lamp system)……………………………20 2-4真空系統………………………………………………………20 2-4-1 紅外光譜樣品槽(IR cell)的設計………………………21 2-5二氧化鈦/鎢網(TiO2/W)的製備………………………………24 2-5-1 TiO2/W的製備……………………………………………24 2-5-2 TiO2/W在紅外光譜樣品槽(IR cell)的擺放位向…………24 2-5-3 TiO2/W的前處理…………………………………………25 2-6藥品的前處理…………………………………………………26 2-7理論計算…………………………………………………………26 2-8研究2-環己烯-1-酮的動機………………………………………27 第三章 製備含金奈米粒子之二氧化鈦奈米線…………………………29 3-1研究動機…………………………………………………………29 3-1-1金奈米粒子的發展與特性…………………………………29 3-1-2二氧化鈦擔體………………………………………………32 3-1-3一維的二氧化鈦……………………………………………33 3-2實驗方法………………………………………………………33 3-2-1實驗藥品…………………………………………………33 3-2-2二氧化鈦合成方法………………………………………35 3-2-3水浴法製備二氧化鈦奈米線……………………………35 3-2-4含金奈米粒子的二氧化鈦奈米線…………………………36 3-3 TiO2/W的前處理………………………………………………39 第四章 結果與討論………………………………………………………40 4-1 2-環己烯-1-酮……………………………………………………40 4-1-1 2-環己烯-1-酮的吸附和熱反應研究…………………40 4-1-2有氧存在下2-環己烯-1-酮/TiO2光反應及熱對照比較…43 4-1-3無氧下低覆蓋率的2-環己烯-1-酮/TiO2光反應及熱對照…44 4-1-4有氧下低覆蓋率的2-環己烯-1-酮/TiO2光反應及熱對照…45 4-1-5有水存在下低覆蓋率的2-環己烯-1-酮/TiO2光反應……50 4-1-6 H2O和18O2共存下低覆蓋率的2-環己烯-1-酮/TiO2光反應52 4-2甲基碘……………………………………………………………56 4-2-1 CH3I在TiO2奈米線及Au-TiO2奈米線上的熱反應………56 4-2-2 CH3I在TiO2奈米線上的光反應…………………………57 4-2-3 CH3I在Au-TiO2奈米線上的光反應………………………58 第五章 結論……………………………………………………………82 5-1 2-環己烯-1-酮在TiO2表面上的吸附與光反應………………82 5-2 CH3I在TiO2奈米線表面上的吸附與光反應……………………82 參考文獻…………………………………………………………………83 圖表目錄 圖1-1吸附位能曲線圖……………………………………………………5 圖1-2吸附物和基材的光激發途徑…………………………………………8 圖1-3電子-電洞對的去激發途徑………………………………………11 圖1-4 TiO2結構圖(rutile and anatase)…………………………………12 圖1-5 TiO2能帶間隙與太陽光波長重疊示意圖…………………………15 圖2-1實驗系統架構簡圖…………………………………………………16 圖2-2 耐高溫不銹鋼IR cell的設計……………………………………23 圖2-3 TiO2/W擺放的位向………………………………………………25 圖3-1合成二氧化鈦粉末的流程圖………………………………………35 圖3-2水浴法合成二氧化鈦奈米線流程圖………………………………36 圖3-3金奈米粒子的製備流程圖…………………………………………37 圖3-4含金奈米粒子的一維二氧化鈦製備流程圖………………………38 圖4-1 2-環己烯-1-酮吸附在二氧化鈦的IR吸收光譜圖…………………60 圖4-2 2-環己烯-1-酮真空下熱反應之IR吸收光譜圖…………………62 圖4-3 2-環己烯-1-酮有氧熱反應之IR吸收光譜圖……………………63 圖4-4 2-環己烯-1-酮有氧光反應之IR吸收光譜圖………………………64 圖4-5 2-環己烯-1-酮有氧光反應及熱對照之IR吸收光譜圖…………65 圖4-6低吸附量2-環己烯-1-酮無氧光反應及熱對照之IR吸收光譜圖66 圖4-7低吸附量2-環己烯-1-酮有氧光反應之IR吸收光譜圖……67 圖4-8低吸附量2-環己烯-1-酮有氧光反應之結果比較…………………68 圖4-9低吸附量2-環己烯-1-酮有氧光反應及熱對照之IR吸收光譜圖…72 圖4-10低吸附量2-環己烯-1-酮有水光反應之IR吸收光譜圖…………73 圖4-11低吸附量2-環己烯-1-酮有水和氧光反應之IR吸收光譜圖……74 圖4-12低吸附量2-環己烯-1-酮於有水中,18O2或 16O2光反應之比較…75 圖4-13 CH3I熱反應之IR吸收光譜圖……………………………………76 圖4-14 CH3I/TiO2奈米線光反應之IR吸收光譜圖………………………77 圖4-15 CH3I/Au-TiO2奈米線光反應之IR吸收光譜圖…………………78 附圖1 2-環己烯-1-酮的液相IR吸收光譜圖………………………………79 附圖2 Phenol吸附在二氧化鈦的IR吸收光譜圖…………………………80 附圖3 CH3I吸附在Degussa P-25二氧化鈦的IR吸收光譜圖……………81 表3-1銅、銀、金的物理性質………………………………………………31 表3-2鉑、金、汞的物理性質……………………………………………31 表3-3製備含金奈米粒子之二氧化鈦奈米線所用的藥品………………34 表4-1 2-環己烯-1-酮的IR振動頻率比較 (cm-1)…………………………61 表4-2 Bicarbonate,carboxylate,carbonate和formate在不同金屬氧化物 表面上的IR吸收頻率 (cm-1)………………………………………………69 表4-3 2-環己烯-1-酮有氧光反應後的產物振動頻率分析 (cm-1)………71 Scheme 4-1 2-環己烯-1-酮的有氧光反應途徑…...………………………49 Scheme 4-2甲酸根的氧原子被同位素氧取代的途徑……………………54

    1.S. J. Gregg and K. S. Sing, Adsorption, Surface area and Porosity., Academic Press, New York, 1967.
    2.G. A. Somorjai, Introduction to surface chemistry and catalysis, Wiley & Sons, New York, p1, 1994.
    3.J. C. Vickerman, Surface Analysis, Wiley & Sons, New York, p2, 1997.
    4.P. W. Atkins, Physical Chemistry, Oxford University, p997, 1994.
    5.R. A. Alberty and R. J. Silbey, J. Physical Chemistry, John Wisely & Sons, New York, p839-840, 1995.
    6.G. A. Somorjai, Introduction to surface chemistry and catalysis, Wiley & Sons, New Youk, p443, 1994.
    7.卓靜哲,何瑞文,黃守仁,施良垣,蘇世剛,物理化學,三民書局,台南市,第507-508頁,1994年。
    8.R. A. Alberty and R. J. Silbey, Physical Chemistry, John Wiely & Sons, New York, p838, 1995.
    9.A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., Chem. Rev. 95, 735, 1995.
    10.A. Fujishima and K. Honda, Nature 37, 238, 1972.
    11.A. J. Bard, J. Phys. Chem. 86, 172, 1982.
    12.A. J. Bard, Science 207, 139, 1980.
    13.W. Wu, J. M. Herrman, and P. Pichat, Catal. 3, 73, 1989.
    14.S. N. Franks and A. J. Bard, J. Phys. Chem. 81, 1484, 1977.
    15.J. K. Leland and A. J. Bard, J. Phys. Chem. 91, 5076, 1987.
    16.Q. S. Li, Chem. Lett. 135, 321, 1983.
    17.A. L. Linsebigler, G. Lu, and J. T. Yates, Jr., Chem. Rev. 95, 735, 1995.
    18.J. Fan and J. T. Yates, Jr., J. Am. Chem. Soc. 118, 4686, 1996.
    19.M. A. Fox and M. T. Dulay, Chem. Rev. 93, 341, 1993.
    20.J. K. Burdett, T. Hughbands, J. M. Gordon, J. W. Richardson, Jr., and J. V. Smith, J. Am. Chem. Soc. 109, 3639, 1987.
    21.J. Augustynski, Electrochim. Acta 38, 43, 1993.
    22.L. Cao, F.–J. Spiess, A. Huang, and S. L. Suib, J. Phys. Chem. B 103, 2912, 1999.
    23.D. F. Ollis, E. Pelizzetti, and N. Serpone, Environ. Sci. Technol. 25, 1522, 1991.
    24.O. Legrini, E. Oliveros, and A. M. Braun, Chem. Rev. 93, 671, 1993.
    25.K.-C. G. Low, S. R. McEvoy, and R. W. Matthews, Environ. Sci. Technol. 25, 460, 1991.
    26.A. Wold, Chem. Mater. 5, 280, 1993.
    27.M. Scgiavello, Ed. Photocatalysis and Environment, Kluwer Academic Publishers, Dordrecht, 1988.
    28.J. Fan and J. T. Yates, Jr., J. Phys. Chem. 98, 10621, 1994.
    29.C.-C. Chuang, J.-S. Shiu, and J.-L. Lin, Phys. Chem. Chem. Phys. 2, 2629, 2000.
    30.J. C. S. Wong, A. Linsebigler, G. Lu, J. Fan, and J. T. Yates, Jr., J. Phys. Chem. 99, 335, 1995.
    31.P. Bou , C. N. Tam, J. Sopková, and F. R. Trouw, J. Chem. Phys. 108(1), 351, 1998.
    32.C. N. Rusu and J. T. Yates, J. Phys. Chem. B 104, 1729-1737, 2000.
    33.J. Fan and J. T. Yates, Jr., J. Phys. Chem. 98, 10621, 1994.
    34.P. Hohenberg and W. Kohn, Phys. Rev. 136, B864, 1964.
    35.W. Kohn and L. J. Sham, Phys. Rev. 140, A1133, 1965.
    36.Acros Organics MSDS
    37.R. M. Wehmeyer and R. D. Rieke, J. Org. Chem. 52, 5056-5057, 1987.
    38.N. J. Pienta and J. E. McKimmey, J. Am. Chem. Soc. 104, 5501, 1982.
    39.M. S. Mubarak, M. Pagel, L. M. Marcus, and D. G. Peters, J. Org. Chem. 63, 1319, 1998.
    40.D. Weir and J. C. Scaiano, Can. J. Chem. 66, 2595, 1988.
    41.N. J. Pienta, J. Am. Chem. Soc. 106, 2704-2705, 1984.
    42.D. I. Schuster, R. Bonneau, D. A. Dunn, J. M. Rao, and J. Joussot-Dubien, J. Am. Chem. Soc. 106, 2706-2707, 1984.
    43.D. I. Schuster and A. M. Insogna, J. Org. Chem. 56, 1879-1882, 1991.
    44.D. I. Schuster, The Chemistry of Enones, Patai, S., Rappoport,Z., Eds., John Wiley and Sons: Ltd.: Chichester, U. K., pp623-756, 1989.
    45.W.-C. Wu, S.-J. Yang, C.-H. Ho, Y.-S. Lin, L.-F. Liao, and J.-L. Lin, J. Phys. Chem. B 110(19), 9627-9631, 2006.
    46.G. C. Bond and D. T. Thompson, Catal. Rev.-Sci. Eng. 41, 319, 1999.
    47.M. Haruta, Catal. Today 36, 153, 1997.
    48.M. Valden, S. Pak, X. Lai, and D. W. Goodman, Catal. Lett. 56, 7, 1998.
    49.國立台灣大學化學研究所 紀育珊碩士論文。
    50.N. N. Greenwood and A. Earnshaw, Chemistry of the Elements Pergamon, Oxford, 1984.
    51.G. A. Somorjai, Introduction to Surface Chemistry and Catalysis Wiley Interscience, New York, 1994.
    52.M. Haruta, T. Kobayashi, H. Sano, and N. Yamada, Chem. Lett. 2, 405, 1987.
    53.M. Haruta, T. Kobayashi, S. Iijima, and F. Delannay, Proc. 9th Int. Congr. Catal., Calgary 1206, 1988.
    54.M. Haruta, K. Saika, T. Kobayashi, S. Tsubota, and Y. Nakahara, Chem. Express 3, 159, 1988.
    55.G. Dagan and M. Tomkiewics, J. Phys. Chem. 97, 12651, 1993.
    56.U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissö, J. Salbeck, H. Spreitzer, and M. Graetzel, Nature 395, 583, 1998.
    57.S. Matsuda and A. Kato, Appl. Catal. 8, 149, 1983.
    58.A. M. Azad, L. B. Younkman, and S. A. Akbar, J. Am. Ceram. Soc. 77, 481, 1994.
    59.B. Wen, C. Liu and Y. Lin, J. Phys. Chem. B 109, 12372, 2005.
    60.T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino, and K. Niihara, Langmuir 14, 3160, 1998.
    61.N. Bao, L. Shen, X. Feng, and X. Lu, J. Am. Ceram. Soc. 87, 326, 2004.
    62.G.-L. Li, G.-H. Wang, and J.-M. Hong, Mater. Res. Bull. 34, 2341, 1999.
    63.Y. Fujiki and N. Ohta, Yogyo Kyokaishi 88, 111, 1980.
    64.C. J. Pouchert, The Aldrich Library of FT-IR Spectra; 1st ed., Aldrich Chemical Co.: Milwaukee, 1985.
    65.K. Noack and R. N. Jones, Can. J. Chem. 39, 2201, 1961.
    66.W.-C. Wu, L.-F. Liao, C.-F. Lien, and J.-L. Lin, Phys. Chem. Chem. Phys. 3, 4456, 2001.
    67.L.-F. Liao, W.-C. Wu, C.-Y. Chen, and J.-L. Lin, J Phys. Chem. B 105, 7678, 2001.
    68.G. Busca, J. Lamotte, J.-C. Lavalley, and V. Lorenzelli, J. Am. Chem. Soc. 109, 5197, 1987.
    69.W.-C. Wu, C.-C. Chuang, and J.-L Lin, J. Phys. Chem. B 104, 8719, 2000.
    70.W.-C. Wu, L.-F. Liao, C.-C. Chuang, and J.-L. Lin, J. Catal. 195, 416, 2000.
    71.L.-F. Liao, C.-F. Lien, D.-L. Shieh, M.-T. Chen, and J.-L. Lin, J. Phys. Chem. B 106, 11240, 2002.
    72.A. C.-C. Chang, S. S.-C. Chuang, M. Gray, and Y. Soong, Energy Fuels 17, 468, 2003.
    73.R. A. Khatri, S. S. C. Chuang, Y. Soong, and M. Gray, Ind. Eng. Chem. Res. 44, 3702, 2005.
    74.S. J. Teichner, Appl. Catal., 123, 57, 1994.
    75.S. J. Teichner, Appl. Catal., 123, 89, 1995.
    76.J. G. Ekerdt, J. Catal. 87, 381, 1984.
    77.S. J. Teichner, Appl. Catal. 112, 219, 1994.
    78.A. T. Bell, J. Catal., 172, 222, 1997.
    79.T. Onishi, J. Chem. Soc. Faraday Trans., 84, 511, 1988.
    80.G. Blyholder, Proc. Int. Congr. Catal., 1964.
    81.W. Hertl, Langmuir, 5, 96, 1989.
    82.E. Guglielminotti, Langmuir, 6, 1455, 1990.
    83.D. Bianchi, Appl. Catal. A, 105, 223, 1993.
    84.J. G. Ekerdt, J. Catal., 90, 17, 1984.
    85.F. Boccuzzi and A. Chiorino, J. Phys. Chem. 100, 3617, 1996.
    86.M. Anpo, K. Chiba, M. Tomonari, S. Coluccia, M. Che, and M. A. Fox, Bull. Chem. Soc. Jpn. 64, 543, 1991.
    87.K. Ishibashi, A. Fujishima, T. Watanabe, and K. Hashimoto, J. Phys. Chem. B 104, 4934, 2000.
    88.M. A. Fox and M. T. Dulay, Chem Rev. 93, 341, 1993.
    89.M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95, 69, 1995.
    90.S. Horikoshi, H. Hidaka, and N. Serpone, Chem. phys. lett. 376, 475, 2003.
    91.A. J. Nozik, D. S. Boudreaux, R. R. Chance, and F. Williams, Interfacial Photoprocesses: Energy Conversion and Synthesis; AmericanChemical Society: Washington, DC, 1980; Chapter 9.
    92.F. Williams and A. J. Nozik, Nature 271, 137, 1978.
    93.T. Sakata, T. Kawai, and K. Hashimoto, J. Phys. Chem. 88, 2344, 1984.
    94.N. B. Colthup, L. H. Daly, and S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, Academic Press Inc., CA, 1990.
    95.K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley and Sons, New York, 1986.
    96.E. Spinner, and J. E. Rowe, Aust. J. Chem. 32, 481, 1979.
    97.J. C.-S. Wong, A. Linsebigler, G. Lu, J. Fan, and J. Yates, J. Phys. Chem. 99(1), 335, 1995.
    98.O. I. Micic, Y. Zhang, K. R. Cromack, A. D. Trifunac, and M. C. Thurnauer, J. Phys. Chem. 97, 13284, 1993.
    99.C. Su, J.-C. Yeh, C.-C. Chen, J.-C. Lin, and J.-L. Lin, J. Catal. 194, 45, 2000.
    100.A. Paul and B. E. Bent, J. Catal. 147, 264, 1994.

    下載圖示 校內:立即公開
    校外:2006-06-28公開
    QR CODE