| 研究生: |
劉儒芳 Liu, Ru-Fang |
|---|---|
| 論文名稱: |
單一孔洞有/無表面電漿子穿透頻譜之分析 Mapping of transmission spectrum between plasmonic and nonplasmonic single holes |
| 指導教授: |
張世慧
Chang, Shih-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | FDTD 、表面電漿子 、圓柱孔洞 、孔洞結構 、異常穿透 |
| 外文關鍵詞: | FDTD, Surface plasmons, Cylindrical hole, Aperture, Extraordinary optical transmission |
| 相關次數: | 點閱:202 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面電漿共振在次波長孔洞結構下會產生異常穿透(EOT)現象,由於EOT在某些波段下為孔洞提供了極強的穿透,而利用這個現象可以廣泛應用在各個領域, 在之前的文獻指出表面電漿特性二維金屬狹縫的共振穿透特性與相同結構完美導體(非表面電漿),在相同的等效波長或波傳遞常數下,有相同的共振模態等等。
在此論文中將用FDTD去模擬三維的模擬空間上去分析是否在三維時還有以上的現象,所以論文將分析孔洞的穿透截面積和模態,在將其作一對一的對應,觀察金屬與相同結構完美導體是否有在相同的等效波長或波傳遞常數下,有相同的共振模態等等。為了要排出局域性表面電漿共振(LSPR)的影響力用了半無窮長的結構去做其分析觀察與孔洞之間的不同。也用了半無窮的結構去模擬反射穿透率,在之後希望可以還原出Fabry-Pérot共振峰值
In this paper, we use the three-dimensional (3-D) FDTD to analyze the extra-ordinary transmission in a single nanohole structure. Three major effects were discussed: (1) the dispersion relation of the plasmonic and nonplasmonic cylindrical waveguide and the (2) Fabry-Pérot resonance and localized surface plasmon resonance effects in the 3-D cylindrical hole with finite thickness and (3) the phase shifts occurring at the air-hole interfaces.
We analyze the modal and propagation characteristics of the analytical dispersion relation in the plasmonic and nonplasmonic waveguides, and use the compact FDTD method in cylindrical coordinates to verify the results. We further analyzed the lower order transmission modes of the circular holes with various radius size and hole thickness. Their resonant wavelength shifts were discussed. We use another semi-infinite structure to exclude the local surface plasmon resonant effect and discuss the possibility of mapping the transmission spectrum between plasmonic and nonplasmonic single nanoholes.
1. S. Blair, and A. Nahata, Focus issue:Extraordinary light transmission through subwavelength structured surfaces - Introduction, Opt. Exp. 12(16), 3618 (2004).
2. C. Genet, and T. W. Ebbesen, Light in tiny holes, Nature 445(4), 39-46 (2007).
3. J. R. Sambles, More than transparent, Nature 391(12), 641 (1998).
4. T. Thio, Strongly enhanced optical transmission through subwavelength holes in metal films, Physica. B 279, 90-93 (2000).
5. M. L. Brongersma and P. G. Kik, Surface plasmon nanophotonics: Springer, 2007
6. V. M. Shalaev and S. Kawata, Nanophotonics with surface plasmons: Elsevier, 2006
7. Shih-Hui Chang and Yu-Lun Su Mapping of transmission spectrum between plasmonic and nonplasmonic single slits. I: resonant transmission J. Opt. Soc. Am. B / Vol. 32, No. 1 / January 2015
8. Shih-Hui Chang and Yu-Lun Su Mapping of transmission spectrum between plasmonic and nonplasmonic single slits. II: nonresonant transmission Vol. 32, No. 1 / January 2015 / J. Opt. Soc. Am. B
9. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," Journal of computational physics, vol. 114, pp. 185-200, 1994.
10. Allen Taflove and Susan C. Hagness Computational Electrodynamics The finite-Difference Time-Domain Method 3th 2005
11. J.-P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," Journal of computational physics, vol. 114, pp. 185-200, 1994
12. P. A. Sturrock, Plasma Physics: An Introduction to the Theory of Astrophysical, Geophysical and Laboratory Plasmas: Cambridge University Press, 1994.
13. H. G. Booker, "Slot aerials and their relation to complementary wire aerials (Babinet's principle)," Electrical Engineers - Part IIIA: Radiolocation, Journal of the Institution of, vol. 93, pp. 620-626, 1946
14. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sensors and Actuators B: Chemical, vol. 54, pp. 3-15, 1999
15. Yee, Kane. Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation 14.3 pp.302-307. (1966)