| 研究生: |
鄧柏承 Deng, Bo-Cheng |
|---|---|
| 論文名稱: |
精軋工輥氧化膜對鋼帶表面粗糙度之影響分析 Oxide Film Influence Analysis of Finishing-Mill Work Roll on Surface Roughness of Steel Strip |
| 指導教授: |
趙隆山
Zhao, Long-Shan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系碩士在職專班 Department of Engineering Science (on the job class) |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 熱軋潤滑 、軋延油量 、冷卻水壓 、表面粗糙度 |
| 外文關鍵詞: | finishing mills, rolling oil, cooling-water pressure |
| 相關次數: | 點閱:62 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
潤滑與冷卻對熱軋產品具有重要性的意義,潤滑油在軋延過程中進行潤滑、冷卻和清洗的作用,所以對鋼帶表面品質有很大程度取決於潤滑油的性能、油量與使用情況。目前,熱軋鋼帶潤滑油又稱為軋延油,在使用過程中,因軋延條件的複雜性、惡劣化,必定對鋼帶產生一定的影響,相對影響到鋼帶表面品質。由於熱軋生產溫度與軋延速度具有相關性,其原理經製程電腦所計算得出的理論數據,調整冷卻水量對製程設定的影響甚大,而且要求軋延穩定性,於是調整冷卻水壓進行對鋼帶表面的測試。隨著今後對鋼帶表面品質的要求越來越高,這些問題將更加顯著。因此,軋延油量的多寡與冷卻水壓力的大小在軋延過程中的變化情形對熱軋鋼帶的表面品質非常重要。
本研究針對中鴻熱軋廠精軋機分析熱軋潤滑油量與冷卻水壓分別對輥面及鋼帶表面品質的影響,應用軋延潤滑與冷卻的相關技術,結合現場情況對軋延潤滑與冷卻進行實驗,實驗過程中,軋延油量對輥面的影響從目視及觸摸即可得知,而冷卻水壓的大小必須透過電子儀器來偵測表面粗糙度才觀察得出結果。研究結果指出軋延油的油量在精軋前段的效果有相互作用的關係,但需以軋延力的大小與軋延穩定性來當作判斷準則。
從實驗結果指出,冷卻水壓大的鋼帶表面粗糙度雖然佳,但其零星部位會因壓力大而造成凹陷深度深;相對冷卻水壓小的表面粗糙度差,不過凹陷深度淺,使用於電鍍的產品上,具明顯的經濟效益。
Based on the finishing mills in Chung Hung hot rolling plant, the thesis is to study the effects of the flow rate of hot rolling lubricant and the cooling-water pressure on the qualities of roller and steel strip surfaces. The experimental study is conducted by combining the application of rolling lubrication and cooling related technologies with the site conditions. The effect of rolling oil on the roller surface can be learned from the visual and touch inspections. However, to analyze the influence of the cooling-water pressure needs to use electronic instruments to detect the surface roughness of the steel strip. The research result indicates that the amount of the rolling oil has the interaction relationship with the front-end finish rolling, whose judge criterion is subject to the rolling force magnitude and stability.The result also illustrates that the larger cooling water pressure has the smaller average roughness. However, the higher pressure water would cause the deeper depressions in some sporadic sites.Since the average roughness for the pressure range used in the work all fits the product requirement, the steel strips with shallower depressions (caused by the lower pressure water) are chosen, which could be used for electroplating products with obvious economic benefits.
[1]Neport, G. (1971). APPLICATION OF A WORKING LUBRICANT ON A WIDE HOT-STRIP ROLLING MILL. IRON STEEL, 44(2), 103-104.
[2]Sano, Y., Hattori, T., & Haga, M. (1992). Characteristics of High-carbon High Speed Steel Rolls for Hot Strip Mill. ISIJ international, 32(11), 1194-1201.
[3]Hwang, K. C., Lee, S., & Lee, H. C. (1998). Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls: Part I: Microstructural analysis. Materials Science and Engineering: A, 254(1), 282-295.
[4]宫开令, & 董雅军. (1998). 高速钢复合轧辊的研制及生产. 钢铁, 33(3), 67-71.
[5]符寒光, & 刘金海. (1999). 国外高速钢复合轧辊研究的进展. 铸造(2), 44-47.
[6]Lanteri, V., Thomas, C., Bocquet, J., Yamamoto, H., & Araya, S. (1998). Black oxide film generation on work rolls and its effects on hot-rolling tribological characteristics. Paper presented at the Proc. Int. Conf. on Steel Rolling.
[7]Molinari, A., Straffelini, G., Tomasi, A., Biggi, A., & Corbo, G. (2000). Oxidation behaviour of ledeburitic steels for hot rolls. Materials Science and Engineering: A, 280(2), 255-262.
[8]Chen, R., & Yuen, W. (2001). Oxide-scale structures formed on commercial hot-rolled steel strip and their formation mechanisms. Oxidation of metals, 56(1-2), 89-118.
[9]Mascia, J. C., Marini, O., & Ubici, E. (1998). Reduction of work roll wear by controlling tertiary scale growth. Iron and steel engineer, 75(6), 48-51.
[10]Cusano, C., & Sliney, H. (1982). Dynamics of solid dispersions in oil during the lubrication of point contacts, Part I—Graphite. ASLE TRANSACTIONS, 25(2), 183-189.
[11]Costa, H., & Hutchings, I. (2009). Effects of die surface patterning on lubrication in strip drawing. journal of materials processing technology, 209(3), 1175-1180.
[12]Kubaschewski, O., & Hopkins, B. E. (1967). Oxidation of metals and alloys: Butterworths.
[13]Birks, N., Meier, G. H., & Pettit, F. S. (2006). Introduction to the high temperature oxidation of metals: Cambridge University Press.
[14]李小玉, 顾正秋, & 罗东林. (1981). 轧制工艺润滑: 北京: 冶金工业出版社.
[15]Путноки, А., Иванченко, В., & Тилик, В. (2009). Технологическиевозможностииспользованиявсегополядопусковпотолщинепригорячейпрокаткеполос. Фундаментальныеиприкладныепроблемычернойметаллургии.
[16]本村貢, & 佐藤一幸. (1981). 鋼の熱間圧延潤滑油に関する開発研究. 潤滑, 26(7), p447-454.
[17]Ginzburg, V. B. (1993). High-quality steel rolling: theory and practice: CRC Press.
[18]吴迪, & 王国栋. (2001). 热轧润滑机理及其出现和应用的前景—热轧润滑技术讲座 (一). 轧钢, 18(4), 50-52.
[19]陶常印. (1997). 热轧工艺润滑对轧辊磨损和钢板表面质量的影响. 鞍钢技术(10), 24-26.
[20]Vergne, C., Boher, C., Levaillant, C., & Gras, R. (2001). Analysis of the friction and wear behavior of hot work tool scale: application to the hot rolling process. Wear, 250(1), 322-333.
[21]Munther, P. A., & Lenard, J. G. (1999). The effect of scaling on interfacial friction in hot rolling of steels. journal of materials processing technology, 88(1), 105-113.
[22]Yu, Y., & Lenard, J. G. (2002). Estimating the resistance to deformation of the layer of scale during hot rolling of carbon steel strips. journal of materials processing technology, 121(1), 60-68.
[23]Krzyzanowski, M., & Beynon, J. (2002). Measurement of oxide properties for numerical evaluation of their failure under hot rolling conditions. journal of materials processing technology, 125, 398-404.
[24]Shirizly, A., & Lenard, J. G. (2000). The effect of scaling and emulsion delivery on heat transfer during the hot rolling of steel strips. journal of materials processing technology, 101(1), 250-259.
[25]Stepashin, A., Kondrat'ev, A., & Shleining, L. (2003). Effect of the finishing temperature in rolling operations on the striation of strip for side members. Metallurgist, 47(1), 88-91.
[26]Gong, D.-y., Xu, J.-z., Liu, X.-h., & Wang, G.-d. (2006). Influencing Factors on Finishing Temperature of Strip During Continuous Hot Rolling. JOURNAL-NORTHEASTERN UNIVERSITY NATURAL SCIENCE, 27(7), 767.
[27]Gong, D.-y., Jiang, Z.-y., Xu, J.-z., Liu, X.-h., & Wu, D. (2010). Setup models of finishing temperature and rolling speed for hot strip mill. Steel Research International, 81(9), 62-65.
[28]喬玉林, 梁志傑, 孫曉峰, & 徐濱士. (2005). 在點線接觸條件下鋼/鋼摩擦副的幹摩擦高溫減摩抗磨性能的研究. 材料工程, 2005(11), 9-12.
[29]Kermani, M., & Morshed, A. (2003). Carbon dioxide corrosion in oil and gas production-A compendium. Corrosion, 59(8), 659-683.
[30]Phaniraj, M. P., Behera, B. B., & Lahiri, A. K. (2005). Thermo-mechanical modeling of two phase rolling and microstructure evolution in the hot strip mill: Part I. Prediction of rolling loads and finish rolling temperature. journal of materials processing technology, 170(1), 323-335.
[31]林詩晴. (2004). 改善熱軋場精軋工輥之剝離.
[32]Chen, R., & Yeun, W. (2003). Review of the high-temperature oxidation of iron and carbon steels in air or oxygen. Oxidation of metals, 59(5-6), 433-468.
校內:2021-07-25公開