| 研究生: |
高有旻 Gao, You-Min |
|---|---|
| 論文名稱: |
基於軸組構法整合自適應生成及機械手臂製造應用於可調式木構造系統 The Integration of Adaptive Generation and Robotic Fabrication Applied to Wooden Frame Structure of Adjustable Timber Structural Systems |
| 指導教授: |
沈揚庭
Shen, Yang-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系 Department of Architecture |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 120 |
| 中文關鍵詞: | 軸組構法 、自適應 、參數設計 、機械手臂 、數位製造 |
| 外文關鍵詞: | Wooden frame structure, Adaptability, Parametric design, Robotic arm, Digital fabrication |
| 相關次數: | 點閱:74 下載:22 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
環境與能源議題下,木造建築成為了一種趨勢,在盛行木造工法中,軸組構法以自由的柱樑組合及榫接接合,展現木材本身的材料性質。在工匠技術逐漸失傳的當今,傳統以手工為主的軸組工法手藝面臨存續與應用上危機,需思考如何以現代技術加以轉化與再生。本研究以軸組構法作為工法及設計基礎,企圖發展具自適應的構造生成系統及其對應的製程,來轉譯構造系統的關係及其複雜的榫接型式。並在設計為建造(Design for Build)的概念下縮短並強化設計到製造間來回調整的過程,銜接製造端並實際以機械手臂輔助製造出構件接合部,以探討並實證設計到製造的一體化流程。
本研究以(1)整合工法及設計基礎並拓展構造可能性的「多向度軸組構法」、(2)使構造與複雜接合自動生成及調適並達到構造定位的「自適應系統」,以及(3)機械手臂模擬及六軸銑銷加工的「機械手臂輔助製造」三個構面來組成機械手臂輔助的自適應工法。在設計階段融入了自適應,將複雜軸組構成關係描述成單純的線架構藉此自動生成軸組構造,運用構件間相互連動的關係,調整結構尺寸及替換複雜榫接等構件可以在調整後自動調適成正確關係,使設計者專注於設計型態;銜接製造階段,本研究運用電腦輔助製造軟體(Fusion360)及機械手臂的路徑生成程式(Grasshopper中的KUKA|prc),使製造過程得以加工路徑視覺化並模擬碰撞,達到木材的精準加工;最終運用機械手臂在六軸的靈活性,以多向度的路徑加工來解決複雜榫接型式在加工上的挑戰。
本研究在實際操作中,先以探討正交及共平面斜面構件所組成的常態軸組構造,建構其自適應系統及實踐機械手臂的輔助加工,來證實軸組構法能以現代工法所實現,而後以其為基礎來探討以多向度構件組成的軸組構造,並建構其自適應系統及製程,有別於常態構造的構築原則多向度在構築上更有靈活度,在突破正交的限制下,發展基於軸組構法的可調式木構造系統,使傳統工法在設計及製造層面提供了新的應用可能性。
In the context of environmental and energy issues, wooden construction has emerged as a trend. The post-and-beam system, with its free column-beam combinations and joinery, highlights the inherent material properties of wood. However, traditional craftsmanship in this technique is facing challenges in terms of preservation and application due to the declining expertise. This research aims to transform and revitalize the traditional wooden frame structure technique using modern technology.The research focuses on developing an adaptive structural generation system and its corresponding manufacturing process based on the post-and-beam system as the construction method and design foundation. The goal is to interpret the relationship between structural systems and complex joinery. By adopting the "Design for Build" concept, the research aims to shorten and strengthen the iterative process between design and manufacturing, and it integrates robotic arm assistance to produce joint components, bridging the gap between design and manufacturing.
The research consists of three aspects: (1) the "Multidimensional the wooden frame structure System" that integrates construction methods and design foundations to expand structural possibilities, (2) an "Adaptive System" that automatically generates and adjusts structural components and complex connections for precise alignment, and (3) "Robotic Arm-Assisted Manufacturing" that utilizes robotic arm simulation and six-axis milling to visualize machining paths and address the challenges of complex joinery.
In practical implementation, the research initially focuses on investigating the post-and-beam structures composed of orthogonal and coplanar sloping components. The adaptive system and robotic arm-assisted manufacturing are used to demonstrate the feasibility of the post-and-beam system using modern methods. Building upon this, the research explores multidimensional wooden frame structure composed of various components, developing an adaptive system and manufacturing process. The multidimensional approach offers greater flexibility in construction, surpassing the limitations of orthogonality. This research provides new possibilities for the application of traditional techniques in design and manufacturing.
中文文獻
[1] 沈揚庭、蕭瑋廷、顏嘉慶(2022)。機械手臂輔助互承性木構築實現從設計到製造一體化流程。建築學報(建築設計教學及設計教育專刊Ⅳ),(120),53-68。
[2] 林庭仲(2022)。以參數化木榫接合型式應用於木桁架系統之研究〔未出版之碩士論文〕。中原大學建築研究所。
[3] 林書嫻(譯)(2016)。圖解日式榫接(原作者:大工道具研究會)。台北市:城邦文化。
[4] 邱于恒(2016)。枝構造〔未出版之碩士論文〕。國立成功大學建築研究所。
[5] 張正瑜(譯)(2021)。木構造最新修訂版:從基礎到實務理論,徹底解構「柱樑構架式」工法、材料、接合、耐震與構架計畫全圖解(原作者:山邊豐彥)。台北市:易博士文化。
[6] 許家碩(2022)。基於混合實境的機器人協作工藝〔未出版之碩士論文〕。國立成功大學建築研究所。
[7] 陳柏榮(2022)。木構造節點與關節設計之數位構築〔未出版之碩士論文〕。淡江大學建築研究所。
[8] 蕭瑋廷(2022)。DFA一體化流程:機械手臂輔助金屬彎折工法應用於數位離散設計〔未出版之碩士論文〕。國立成功大學建築研究所。
外文文獻
[1] 內田祥哉(1993)。在来構法の研究―木造の継手仕口について。東京都:住宅総合研究財団。
[2] 住吉寅七、松井源吾(1989)。木造の継手と仕口。東京都:鹿島出版会。
[3] 宮崎県 (2018)。木造軸組構法入門。株式會社X-Knowledge。
[4] 深谷基弘、鈴木紘子(2001)。圖解木造建築傳統技法事典。東京都 : 彰國社。
[5] 飯塚五郎藏、山室滋著(1998)。木造住宅構法。東京都 : 市ケ谷。
[6] Battaglia, C. A., Miller, M. F., & Verian, K. P. (2020). Print-cast concrete: additive manufacturing for 3D printing mortar in robotically fabricated green sand molds. In Second RILEM International Conference on Concrete and Digital Fabrication: Digital Concrete 2020 2 (pp. 757-767). Springer International Publishing.
[7] Chai, H., & Yuan, P. F. (2019). Investigations on potentials of robotic band-saw cutting in complex wood structures. In Robotic Fabrication in Architecture, Art and Design 2018: Foreword by Sigrid Brell-Çokcan and Johannes Braumann, Association for Robots in Architecture (pp. 256-269). Springer International Publishing.
[8] Chai, H., Zhang, L., & Yuan, P. F. (2020). Advanced timber construction platform multi-robot system for timber structure design and prefabrication. In Architectural Intelligence: Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019) (pp. 129-144). Springer Singapore.
[9] Haque, U. (2007). The architectural relevance of Gordon Pask. Architectural Design, 77(4), 54-61.
[10] Honig, A., Howard, A., Eskin, E., & Stolfo, S. (2002). Adaptive model generation: an architecture for deployment of data mining-based intrusion detection systems. Applications of data mining in computer security, 153-193.
[11] Jipa, A., Bernhard, M., Dillenburger, B., Ruffray, N., Wangler, T., & Flatt, R. J. (2017). skelETHon Formwork: 3D printed plastic formwork for load-bearing concrete structures. In Proceedings of the 21st Congreso Internacional de la Sociedad Iberoamericana de Gráfica Digital (Vol. 3, No. 12, pp. 345-352). Blucher.
[12] Kayser, M., Cai, L., Falcone, S., Bader, C., Inglessis, N., Darweesh, B., & Oxman, N. (2018). FIBERBOTS: an autonomous swarm-based robotic system for digital fabrication of fiber-based composites. Construction Robotics, 2, 67-79.
[13] Larsson, M., Yoshida, H., Umetani, N., & Igarashi, T. (2020). Tsugite: Interactive Design and Fabrication of Wood Joints. In UIST (pp. 317-327).
[14] Mostafavi, S., Kastrati, V., Badr, H., & Mazlan, S. (2020). Design Computation to Robotic Production Methods for Reciprocal Tessellation of Free-from Timber Structures: Design, production, and assembly of 100 years Bauhaus wood Pavilion. In 38th Conference on Education and Research in Computer Aided Architectural Design in Europe (pp. 413-421).
[15] Mostafavi, S., Kemper, B. N., & Fischer, D. L. (2019). Multimode robotic materialization: design to robotic fabrication method of integrating subtractively produced hard components and additively deposited soft silicone. In Robotic Fabrication in Architecture, Art and Design 2018: Foreword by Sigrid Brell-Çokcan and Johannes Braumann, Association for Robots in Architecture (pp. 349-362). Springer International Publishing.
[16] Takabayashi, H., Kado, K., & Hirasawa, G. (2019). Versatile robotic wood processing based on analysis of parts processing of Japanese Traditional Wooden Buildings. In Robotic Fabrication in Architecture, Art and Design 2018: Foreword by Sigrid Brell-Çokcan and Johannes Braumann, Association for Robots in Architecture (pp. 221-231). Springer International Publishing.
[17] Tanadini, D., Boller, G., Leung, P. Y., Huang, Y., & D'Acunto, P. (2022). Robotic assembly of interweaving timber linear elements using bespoke interlocking timber-to-timber connections: the CantiBox. In ACADIA 2022: Hybrids & Haecceities.
[18] Weibelzahl, S., Paramythis, A., & Masthoff, J. (2020, July). Evaluation of adaptive systems. In Proceedings of the 28th ACM Conference on User Modeling, Adaptation and personalization (pp. 394-395).
[19] Yao, L., Seyedahmadian, A., Chhadeh, P. A., Cregan, M., Bolhassani, M., Schneider, J., ... & Akbarzadeh, M. (2022, January). Tortuca: An Ultra-Thin Funicular Hollow Glass Bridge. In Proceedings of the 42nd Annual Conference of the Association for Computer-Aided Design in Architecture (ACADIA).
網路文獻
[1] An Overview of Digital Fabrication in Architecture https://www.archdaily.com/940530/an-overview-of-digital-fabrication-in-architecture
圖片來源
[1] Fun Arcade http://architettura.it/files/20110312/index.htm
[2] Robotic collaboration in timber construction https://ethz.ch/en/news-and-events/eth-news/news/2018/03/spatial-timber-assemblies.html
[3] The Evening Line https://metropolismag.com/projects/pioneer-digital-fabrication-heralds-machine-made-revolution-architecture/
[4] 上銀科技 https://www.hiwin.tw/products/mar/articulated/ra610/ra610_1151_gc.aspx
[5] 工業革命發展圖 https://www.allaboutlean.com/industry-4-0/industry-4-0-2/
[6] 工業4.0科技 https://zh.oosga.com/docs/industry-40/
[7] 工業機械手臂種類示意圖 https://www.tthk.ee/inlearcs/1-basic-about-industrial-robots/
[8] 控制論系統的原理圖 ttps://commons.wikimedia.org/w/index.php?curid=40308646)
[9] 第一台工業機械手臂 Unimate https://kknews.cc/zh-tw/tech/zxaro6a.html
[10] 第一台六軸機械手臂 Standford Arm https://erc-bpgc.github.io/blog/blog/robotic_arms/
[11] 順逆銑差異 https://www.rapiddirect.com/blog/climb-milling-vs-conventional-milling/
[12] 機械手臂應用於遊樂設施 https://thediplomat.com/2022/03/what-will-chinas-metaverse-look-like/l
[13] 機械手臂應用於汽車生產線 https://www.stockfeel.com.tw/
[14] 機械手臂的構造邏輯 https://www.codeproject.com/Articles/756070/Simulator-Axis-Articulated-Robots
[15] 機械手臂的六軸 https://www.kuka.com/
[16] 機械手臂的運動模式 https://learnchannel-tv.com/en/robot/interpolation/