| 研究生: |
汪彣聰 Wang, Wen-Tsung |
|---|---|
| 論文名稱: |
5G NR非地面網路之頻率同步與主同步訊號偵測演算法 Frequency Synchronization and Primary Synchronization Signal Detection Algorithms in 5G NR Non-Terrestrial Networks |
| 指導教授: |
賴癸江
Lai, Kuei-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 正交分頻多工系統 、非地面網路 、都卜勒位移 、頻率同步 、主同步訊號 、接收端分集 |
| 外文關鍵詞: | OFDM, NTN, Doppler shift, Frequency Synchronization, PSS, Receive Diversity |
| 相關次數: | 點閱:37 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
正交分頻多工系統於非地面網路的下鏈同步中,由於衛星的高速移動,使得傳送端與接收端之間產生較大的相對速度,造成顯著的都卜勒位移效應,進而在接收端引發嚴重的載波間干擾,影響用於隨機接入過程的主同步訊號之偵測。因此,本論文在第五代行動通訊新無線電的下鏈規格中,針對頻率同步與主同步訊號偵測進行研究,並將都卜勒位移效應產生的頻率偏移拆分成小數與整數兩個部分進行同步,小數部分頻率偏移在時域上由文獻中基於循環字首的演算法估測,整數部分頻率偏移與主同步訊號在頻域上使用文獻中基於主同步訊號良好自相關性的演算法偵測,並將上述文獻中所使用的單天線系統推廣至傳送端單天線接收端多天線系統,使其能夠在接收端使用接收端分集技術,探討以類似等增益合併方法分別在時域與頻域上應用,藉此提高接收訊號在多路徑衰減通道與受都卜勒位移效應影響下的可靠性。在多數模擬環境中,使用類似等增益合併方法所估測和偵測出的頻率偏移值更貼近真實頻率偏移值,進一步提高了頻率同步與主同步訊號偵測的效能。
The orthogonal frequency division multiplexing (OFDM) system in non-terrestrial networks (NTNs) faces significant challenges in downlink synchronization due to the high relative velocity between the transmitter and receiver caused by the rapid movement of satellites. This results in a pronounced Doppler shift effect, leading to severe inter-carrier interference (ICI) at the receiver and adversely affecting the detection of the primary synchronization signal (PSS) used for random access procedure. To address this, this thesis delivers a method within the downlink specifications of the fifth generation new radio (5G NR) to separate the frequency offset caused by the Doppler shift into fractional and integer parts for synchronization. The fractional part is estimated in the time domain using a cyclic prefix-based algorithm from the literature, while the integer part, along with the PSS, is detected in the frequency domain using an algorithm based on the good autocorrelation properties of the PSS as documented in literature. This thesis proposes to extend the algorithms from a single-antenna system to a single-transmit, multi-receive antenna system, enabling the use of receive diversity techniques to improve the synchronization performance. In the thesis, we apply a method similar to equal gain combining (EGC) in both the time and frequency domains, to improve the reliability of the received signal under multipath fading channel effects and Doppler shift effects. In most simulation scenarios, the frequency offset values estimated and detected using a method similar to EGC are closer to the actual frequency offset values, thereby further enhancing the performance of frequency synchronization and PSS detection.
[1] X. Lin et al., “5G New Radio evolution meets satellite communications: Opportunities, challenges, and solutions,” in 5G and Beyond: Fundamentals and Standards, X. Lin and N. Lee, Eds. Springer, 2021.
[2] P. H. Moose, "A technique for orthogonal frequency division multiplexing frequency offset correction," in IEEE Transactions on Communications, vol. 42, no. 10, pp. 2908-2914, Oct. 1994
[3] X. Lin, Z. Lin, S. E. Löwenmark, J. Rune, R. Karlsson and Ericsson, "Doppler Shift Estimation in 5G New Radio Non-Terrestrial Networks," 2021 IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021, pp. 1-6, doi: 10.1109/GLOBECOM46510.2021.9685184.
[4] A. Omri, M. Shaqfeh, A. Ali and H. Alnuweiri, "Synchronization Procedure in 5G NR Systems," in IEEE Access, vol. 7, pp. 41286-41295, 2019, doi: 10.1109/ACCESS.2019.2907970.
[5] J. J. van de Beek, M. Sandell and P. O. Borjesson, "ML estimation of time and frequency offset in OFDM systems," in IEEE Transactions on Signal Processing, vol. 45, no. 7, pp. 1800-1805, July 1997, doi: 10.1109/78.599949.
[6] TR 38.811,”Study on New Radio (NR) to Support Non-Terrestrial Networks,” v.15.4.0, Oct. 2020.
[7] Y. -H. You and H. -K. Song, "Efficient Sequential Detection of Carrier Frequency Offset and Primary Synchronization Signal for 5G NR Systems," in IEEE Transactions on Vehicular Technology, vol. 69, no. 8, pp. 9212-9216, Aug. 2020
[8] D. G. Brennan, "Linear Diversity Combining Techniques," in Proceedings of the IRE, vol. 47, no. 6, pp. 1075-1102, June 1959, doi: 10.1109/JRPROC.1959.287136.
[9] E. A. Sourour and M. Amer, "Frequency domain synchronization and cell search in 3GPP LTE Systems," 2015 International Conference on Computing, Networking and Communications (ICNC), Garden Grove, CA, USA, 2015, pp. 341-345, doi: 10.1109/ICCNC.2015.7069366.
[10] X. Lin et al., “5G New Radio: Unveiling the Essentials of the Next Generation Wireless Access Technology.” IEEE Commun. Standards Mag., vol.3, Sept. 2019, pp. 30-37.
[11] X. Lin, S. Rommer, S. Euler, E. A. Yavuz and R. S. Karlsson, "5G from Space: An Overview of 3GPP Non-Terrestrial Networks," in IEEE Communications Standards Magazine, vol. 5, no. 4, pp. 147-153, December 2021, doi: 10.1109/MCOMSTD.011.2100038.
[12] TR 38.211,”Physical channels and modulation (Release 15)”June 2017.
[13] C.-Y.Chu, I.-W Lai, Y.-Y. Lan, and T.-D. Chiueh, “Efficient sequential integer CFO and sector identity detection for LTE cell search,” IEEE Wireless Commun. Lett., vol. 3, no. 4, pp. 389-392, Aug. 2014.
[14] Y.You, J. Park, l. Ahn, and M. Kim, “Low-complexity detection integer carrier frequency offset and sidelink identity for LTE-D2D communications.” IEEE Wireless Commun. Lett., vol. 8, no. 5, pp. 1477-1480, Oct. 2019.
校內:2029-08-01公開