簡易檢索 / 詳目顯示

研究生: 林恩吟
Lin, En-Yin
論文名稱: 高強度之聚醚醚酮複合材料的積層製造技術與機械性質探討
Investigating the Fabrication Process and Mechanical Properties of Additively Printed Reinforced PEEK Composite
指導教授: 鄭友仁
Jeng, Yeau-ren
學位類別: 碩士
Master
系所名稱: 工學院 - 生物醫學工程學系
Department of BioMedical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 95
中文關鍵詞: 高分子增強複合材料聚醚醚酮纖維強化玻璃纖維碳纖維熱熔融層積技術參數設置
外文關鍵詞: polymer reinforced composites, polyether ether ketone, fiber reinforcement, glass fiber, carbon fiber, thermal fusion lamination technology, parameter setting
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚醚醚酮(Polyetheretherketone,PEEK)為熱塑性半結晶高分子材料,具有卓越的機械性能、生物相容性、熱穩定性、耐化學性等特性,在許多產業都受到廣泛的應用。聚醚醚酮的脊柱植入物於 2013年獲得 FDA510K 的批准對於醫材研發更是振奮人心。近年來,熱塑性複合纖維材料的市場規模逐漸擴大,其中以碳纖維與玻璃纖維為主要補強料,為航空、交通運輸、綠能等產業提供需求。由於纖維材料具有循環再利用、輕量化等價值,可依不同產業需求研發材料搭配組合進而擴大應用。複合材料應用在醫材及航太領域常選用之積層製造
    (Additive Manufacturing, AM)技術上,具有發展少量多樣、輕量化與複雜工件結構之優勢。其中,熱熔融層積 (Fused Deposition Modeling, FDM)是實現高強度輕量化關鍵零組件之理想的製程選擇,其參數設定更是會影響基材與纖維之結合度。PEEK 的製程尚在新興階段,因目前已有的研究成果有限且產業需求殷切,因此,本論文之研究目的是從有限的可用機台中找到適合之參數設定。
    本論文選擇 4 種組合作為列印材料:聚醚醚酮、聚醚醚酮添加 20%玻璃纖維、聚醚醚酮添加 10%碳纖維、聚醚醚酮添加 20%碳纖維。利用熱熔融層積列印 (FDM) 技術,研究了他們打印參數組合(含噴嘴溫度、列印速度、層厚、填充率)列印,並對其進行後處理(例如:退火溫度)。最後藉由機械性質測量結果,探討添加增強型纖維材料及材料後處理對聚醚醚酮的影響。
    本論文研究結果顯示,噴嘴溫度和艙室溫度為影響材料之層間結合的主要因素,因為溫度影響聚合物斷裂形成短鏈,所以結晶過程更容易進行。而列印速度及填充率則會牽涉到整體樣品的結構成形,因為流動性和收縮率會影響樣品的準確性和打印質量。退火處理不能有效的減小層間間隙,對於基材與纖維的結合也沒有太大的幫助。
    因此,與文獻中現有的相關結果相比,本研究中研究的四種材料(聚醚醚酮、聚醚醚酮添加 20%玻璃纖維、聚醚醚酮添加 10%碳纖維、聚醚醚酮添加 20%碳纖維20%)組合具有更優異的機械性能。
    掃描電子顯微鏡 (SEM) 圖像有助於了解加工處理行為。 (例如,衝擊、斷裂和熱性能的變化)因為市面上機台不是針對高溫熱塑性材料設計,因此零件穩定性不足、可調整溫度上有上限。但聚醚醚酮及其複合材料仍然成功地打印和特徵在這項研究。

    Polyetheretheretherketone (PEEK) is a thermoplastic semi-crystalline polymer with excellent mechanical, biocompatibility, thermal stability, chemical resistance, and other properties, which is used extensively in many industries. In 2013, the polyether ketone spinal implant was approved by FDA510K, which makes it even more exciting for the medical
    materials community. In recent years, there has been a gradual increase in the market size for thermoplastic composite fiber materials. Carbon fiber and fiberglass are the primary reinforcement materials that provide demand for aviation, transport, biomedical, green energy, and other industries,because of its characteristics of recycling value and lightweight. Their combined materials can be developed according to the needs of different
    industries to broaden their application range, such as medical and industrial. The Additive Manufacturing (AM) has the advantage of developing a small batch of lightweight and complex structures, which commonly used in medical materials and aerospace fields. Fused Deposition Modelling (FDM)is ideal for realizing high-strength and lightweight components. As the
    manufacturing process for the PEEK is still emerging, due to the limited research results and solid industrial demand, this dissertation aims to
    investigate suitable operating parameters from the few available FDM equipment.
    This study chooses four combinations of printing materials: PEEK, PEEK with 20% glass fiber, PEEK with 10% carbon fiber, and PEEK with 20% carbon fiber for Fusion Deposition Printing (FDM). Their printingprocess parameters (e.g., nozzle temperature, printing speed, layer thickness, and fill rate) and post-processing parameters (e.g.,annealing temperature) were studied to print PEEK and its composite structures for their material characterizations.
    The results show that nozzle temperature and chamber temperature are the key factors influencing the interleaving materials because of the polymer chains are more easily broken into short chains, and then the crystallization process is easier to proceed. The printing speed and filling rate are related to the formation of the structure of the whole sample
    because of the flow and shrinkage will affect the accuracy of the sample and the printing quality. Annealed heat treatment can’t effectively reduce
    the gap between layers but does not assist the connection between the substrate and the fiber.
    As a result, the four material (PEEK, PEEK glass fiber 20%, PEEK carbon fiber 10%, PEEK carbon fiber 20%) combinations investigated in this study have superior mechanical properties compared with the existing related results in the literature.
    Scanning electron microscope (SEM) images help understand processing behavior. (e.g., changes in impact, fracture, and thermal properties)Although the available printing equipment is not designed for
    high-temperature thermoplastic material, which produce thermal instability and limited operating temperature range, PEEK and its composite structures were still successfully printed and characterized in this study.

    Abstract I 中文摘要 IV 致謝 VII Table of Contents X Chapter 1 Introduction 1 Chapter 2 Reference Review 4 2.1 Development of 3D Printing 4 2.1.1 Trend of 3D Printing 4 2.1.2 Advantages of 3D Printing 5 2.1.3 3D printing parameter design 9 2.2 Discussion on Rapid Prototyping (RP) System 13 2.2.1 Review of Rapidly Forming Developments 13 2.2.2 The principle of rapid formation 15 2.2.3 Rapidly formed technology types 17 2.2.4 Types of Rapid Formation 19 2. 3 PEEK 20 2.3.1 Introduction to PEEK 20 2.3.2 Introduction of PEEK Features 20 2.3.3 Structure of PEEK 21 2. 4 Fiber Materials 22 2.4.1 Carbon fiber reinforcement 22 2.4.2 Glass fiber reinforcement 23 2.4.3 Factors Influencing Fiber 25 2. 5 Introduction of CURE slicing software 26 2.6 post-processing 27 Chapter 3 Material and Method 29 3.1 Flow Chart 29 3.2 Experimental materials 31 3.3 Preparation of test pieces 33 3.3.1 Printing Parameters 33 3.3.2 Annealing 37 3.4 Principle of test method 38 3.4.1 Tensile test 38 3.4.2 Impact test 40 3.4.3 Three-point bending resistance 42 3.4.4 Sclerocope Hardness 44 3.4. 5 Scanning Electron Microscope 45 3.4. 6 Energy dispersive X-ray spectrum 47 3.4. 7 Micro CT 49 3.4.8 Porosity 51 3.4.9TGA 51 Chapter 4 Results 52 4.1 Mechanical properties 52 4.1.1 Tensile test 52 4.1.2 Other tests 55 4.2 Morphology 57 4.2.1 SEM 57 4.2.2 EDX 63 4.2.3XRD 65 4.2.4 Crystallinity 67 4.2.5 Micro CT 69 4.2.6 Porosity 71 4.3 Thermal performance 74 4.3.1 TGA 74 Chapter 5 Discuss 76 5.1 Material 76 5.2 Machine 78 5.3 Other 82 5.4 The key factor 84 Chapter 6 Conclusion 85 Chapter 7 Future work 87 References 88

    [1] B. Valentan, “PROCESSING POLY(ETHER ETHERKETONE) ON A 3D PRINTER FOR THERMOPLASTIC MODELLING,” Materiali in tehnologije, p. 7, 2013.
    [2] A. Savini and G. G. Savini, “A short history of 3D printing, a technological revolution just started,” in 2015 ICOHTEC/IEEE International History of High-Technologies and their Socio-Cultural Contexts Conference (HIS ℡ CON), Aug. 2015, pp. 1–8. doi: 10.1109/HIS℡CON.2015.7307314.
    [3] “The third industrial revolution | Apr 21st 2012,” The Economist. https://www.economist.com/weeklyedition/2012-04-21 (accessed Jul. 04, 2022).
    [4] Gross D., “Obama’s speech highlights rise of 3-D printing | CNN Business,” CNN, Feb. 13, 2013. https://www.cnn.com/2013/02/13/tech/innovation/obama-3dprinting/index.html (accessed Nov. 10, 2022).
    [5] “IDC - spending on 3D printing to reach $23b in 2022,” ChannelLife New Zealand. https://channellife.co.nz/story/idc-spending-3d-printing-reach-23b-2022 (accessed Jul. 04, 2022).
    [6] “Wohlers Report 2021,” Wohlers Associates. https://wohlersassociates.com/product/wohlers-report-2021/ (accessed Nov. 10, 2022).
    [7] “The Importance of 3D Printing in Industry 4.0,” 3Dnatives, Feb. 15, 2021. https://www.3dnatives.com/en/3d-printing-in-industry-4-0-150220215/ (accessed Jul. 04, 2022).
    [8] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Composites Part B: Engineering, vol. 143, pp. 172–196, Jun. 2018, doi: 10.1016/j.compositesb.2018.02.012.
    [9] J.-Y. Lee, J. An, and C. K. Chua, “Fundamentals and applications of 3D printing for novel materials,” Applied Materials Today, vol. 7, pp. 120–133, Jun. 2017, doi: 10.1016/j.apmt.2017.02.004.
    [10] D. Kazmer, “28 - Three-Dimensional Printing of Plastics,” in Applied Plastics Engineering Handbook (Second Edition), M. Kutz, Ed. William Andrew Publishing, 2017, pp. 617–634. doi: 10.1016/B978-0-323-39040-8.00029-8.
    [11] W. Xu et al., “3D printing for polymer/particle-based processing: A review,” Composites Part B: Engineering, vol. 223, p. 109102, Oct. 2021, doi: 10.1016/j.compositesb.2021.109102.89
    [12] P. Wang, B. Zou, H. Xiao, S. Ding, and C. Huang, “Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK,” Journal of Materials Processing Technology, vol. 271, pp. 62–74, Sep. 2019, doi: 10.1016/j.jmatprotec.2019.03.016.
    [13] W. Wu, P. Geng, G. Li, D. Zhao, H. Zhang, and J. Zhao, “Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS,” Materials, vol. 8, no. 9, Art. no. 9, Sep. 2015, doi: 10.3390/ma8095271.
    [14] “Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing: Materials Research Innovations: Vol 18, No sup5.” https://www.tandfonline.com/doi/abs/10.1179/1432891714Z.000000000898 (accessed Aug. 10, 2022).
    [15] Y. Li and Y. Lou, “Tensile and Bending Strength Improvements in PEEK Parts Using FusedDeposition Modelling 3D Printing Considering Multi-Factor Coupling,” Polymers, vol. 12, no. 11, Art. no. 11, Nov. 2020, doi: 10.3390/polym12112497.
    [16] B. M. Tymrak, M. Kreiger, and J. M. Pearce, “Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions,” Materials & Design, vol. 58, pp. 242–246, Jun. 2014, doi: 10.1016/j.matdes.2014.02.038.
    [17] M. Vaezi and S. Yang, “Extrusion-based additive manufacturing of PEEK for biomedical applications,” Virtual and Physical Prototyping, vol. 10, no. 3, pp. 123–135, Jul. 2015, doi: 10.1080/17452759.2015.1097053.
    [18] X. Deng, Z. Zeng, B. Peng, S. Yan, and W. Ke, “Mechanical Properties Optimization of Poly-Ether-Ether-Ketone via Fused Deposition Modeling,” Materials (Basel), vol. 11, no. 2, p. E216, Jan. 2018, doi: 10.3390/ma11020216.
    [19] S. Ding, B. Zou, P. Wang, and H. Ding, “Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM,” Polymer Testing, vol. 78, p. 105948, Sep. 2019, doi: 10.1016/j.polymertesting.2019.105948.
    [20] X. Han et al., “Carbon Fiber Reinforced PEEK Composites Based on 3D-Printing Technology for Orthopedic and Dental Applications,” Journal of Clinical Medicine, vol. 8, no. 2, Art. no. 2, Feb. 2019, doi: 10.3390/jcm8020240.
    [21] G. Zak, M. Haberer, C. B. Park, and B. Benhabib, “Mechanical properties of short-fibre layered composites: prediction and experiment,” Rapid Prototyping Journal, vol. 6, no. 2, pp. 107–118, Jan. 2000, doi: 10.1108/13552540010323583.
    [22] J. M. Chacón, M. A. Caminero, P. J. Núñez, E. García-Plaza, I. García-Moreno, and J. M. Reverte, “Additive manufacturing of continuous fibre reinforced thermoplastic 90composites using fused deposition modelling: Effect of process parameters on mechanical properties,” Composites Science and Technology, vol. 181, p. 107688, Sep. 2019, doi: 10.1016/j.compscitech.2019.107688.
    [23] T. Hofstätter, D. B. Pedersen, G. Tosello, and H. N. Hansen, “State-of-the-art of fiberreinforced polymers in additive manufacturing technologies,” Journal of Reinforced Plastics and Composites, vol. 36, no. 15, pp. 1061–1073, 2017, doi: 10.1177/0731684417695648.
    [24] D. R. Hetrick, S. H. R. Sanei, C. E. Bakis, and O. Ashour, “Evaluating the effect of variable fiber content on mechanical properties of additively manufactured continuous carbon fiber composites,” Journal of Reinforced Plastics and Composites, vol. 40, no. 9–10, pp. 365–377, 2021, doi: 10.1177/0731684420963217.
    [25] B. D. Lawrence, M. D. Coatney, F. Phillips, T. C. Henry, Y. Nikishkov, and A. Makeev, “Evaluation of the mechanical properties and performance cost of additively manufactured continuous glass and carbon fiber composites,” International Journal of Advanced Manufacturing Technology, vol. 120, no. 1–2, pp. 1135–1147, 2022, doi: 10.1007/s00170-022-08879-w.
    [26] D. Yang, Y. Cao, Z. Zhang, Y. Yin, and D. Li, “Effects of crystallinity control on mechanical properties of 3D-printed short-carbon-fiber-reinforced polyether ether ketone composites,” Polymer Testing, vol. 97, p. 107149, May 2021, doi: 10.1016/j.polymertesting.2021.107149.
    [27] P. Wang et al., “Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing,” Composites Part B: Engineering, vol. 198, p. 108175, Oct. 2020, doi: 10.1016/j.compositesb.2020.108175.
    [28] D. M. Devine, J. Hahn, R. G. Richards, H. Gruner, R. Wieling, and S. G. Pearce, “Coating of carbon fiber-reinforced polyetheretherketone implants with titanium to improve bone apposition,” Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 101B, no. 4, pp. 591–598, 2013, doi: 10.1002/jbm.b.32861.
    [29] T. Lu et al., “Multilevel surface engineering of nanostructured TiO2 on carbon-fiberreinforced polyetheretherketone,” Biomaterials, vol. 35, no. 22, pp. 5731–5740, Jul. 2014, doi: 10.1016/j.biomaterials.2014.04.003.
    [30] “Aerospace Industrial Development Corporation (AIDC) in Taiwan.” https://www.aidc.com.tw/en/news/310 (accessed Jul. 04, 2022).
    [31] M. Ho et al., “Critical factors on manufacturing processes of natural fibre composites,” Composites Part B: Engineering, vol. 43, no. 8, pp. 3549–3562, Dec. 2012, doi: 10.1016/j.compositesb.2011.10.001.
    [32] N. Ngatiman, R. Jumaidin, A. F. Ab Ghani, F. Munir, and S. Dhar Malingam, “Hybrid Carbon/Glass Fiber Reinforced Polymer; A Frontier Material for Aerospace Industry : 91A Review on Mechanical Properties Enhancement,” Current Science and Technology, vol. 1, pp. 41–51, Dec. 2021, doi: 10.15282/cst.v1i2.6919.
    [33] E. Asmatulu, J. Twomey, and M. Overcash, “Recycling of fiber-reinforced composites and direct structural composite recycling concept,” Journal of Composite Materials, vol. 48, no. 5, p. 593, 2013.
    [34] G. Oliveux, L. Dandy, and G. Leeke, “Current status of recycling of fibre reinforced polymers: Review of technologies, reuse and resulting properties,” 2015, doi: 10.1016/J.PMATSCI.2015.01.004.
    [35] “Composite Material Applications.” https://encyclopedia.pub/entry/14594 (accessed Jul. 04, 2022).
    [36] “ 快 速 成 型 技 術 - 原 理 和 功 能 要 求 | IntechOpen.” https://www.intechopen.com/books/307 (accessed Nov. 10, 2022).
    [37] M. Nadgorny and A. Ameli, “Functional Polymers and Nanocomposites for 3D Printing of Smart Structures and Devices,” ACS Appl. Mater. Interfaces, vol. 10, no. 21, pp. 17489–17507, May 2018, doi: 10.1021/acsami.8b01786.
    [38] “The Complete History of 3D Printing: From 1980 to 2022 - 3DSourced,” Aug. 10, 2021. https://www.3dsourced.com/guides/history-of-3d-printing/ (accessed Jul. 04, 2022).
    [39] Y. Yan et al., “Rapid prototyping and manufacturing technology: Principle, representative technics, applications, and development trends,” Tsinghua Science and Technology, vol. 14, no. S1, pp. 1–12, Jun. 2009, doi: 10.1016/S1007-0214(09)70059-8.
    [40] “CNC Milling: Advantages and Disadvantages Clearly Explained,” Gensun Precision Machining, Mar. 26, 2021. https://www.china-machining.com/blog/cnc-millingadvantages-and-disadvantages/ (accessed Jul. 04, 2022).
    [41] S. A. M. Tofail, E. P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, “Additive manufacturing: scientific and technological challenges, market uptake and opportunities,” Materials Today, vol. 21, no. 1, pp. 22–37, Jan. 2018, doi: 10.1016/j.mattod.2017.07.001.
    [42] W. E. Frazier, “Metal Additive Manufacturing: A Review,” J. of Materi Eng and Perform, vol. 23, no. 6, pp. 1917–1928, Jun. 2014, doi: 10.1007/s11665-014-0958-z.
    [43] P. Priyanka, A. Dixit, and H. S. Mali, “High-Strength Hybrid Textile Composites with Carbon, Kevlar, and E-Glass Fibers for Impact-Resistant Structures. A Review.,” Mech Compos Mater, vol. 53, no. 5, pp. 685–704, Nov. 2017, doi: 10.1007/s11029-017-9696-2.
    [44] “橋體徑距長度對纖維強化壓克力暫用固定局部義齒斷折負荷之影響__臺灣博碩士 論 文 知 識 加 值 系 統 .” https://ndltd.ncl.edu.tw/cgibin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22099KMC05089016%22.&searchmode=basi92c (accessed Nov. 10, 2022).
    [45] J. M. Chacón, M. A. Caminero, P. J. Núñez, E. García-Plaza, I. García-Moreno, and J. M. Reverte, “Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties,” Composites Science and Technology, vol. 181, p. 107688, Sep. 2019, doi: 10.1016/j.compscitech.2019.107688.
    [46] P. Wang et al., “Preparation of short CF/GF reinforced PEEK composite filaments and their comprehensive properties evaluation for FDM-3D printing,” Composites Part B: Engineering, vol. 198, p. 108175, Oct. 2020, doi: 10.1016/j.compositesb.2020.108175.
    [47] Z. Zhou et al., “Fabrication and mechanical properties of different types of carbon fiber reinforced polyetheretherketone: A comparative study,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 135, p. 105472, Nov. 2022, doi: 10.1016/j.jmbbm.2022.105472.
    [48] S. M. Kurtz and J. N. Devine, “PEEK biomaterials in trauma, orthopedic, and spinal implants,” Biomaterials, vol. 28, no. 32, pp. 4845–4869, Nov. 2007, doi: 10.1016/j.biomaterials.2007.07.013.
    [49] C. Basgul, T. Yu, D. W. MacDonald, R. Siskey, M. Marcolongo, and S. M. Kurtz, “Does annealing improve the interlayer adhesion and structural integrity of FFF 3D printed PEEK lumbar spinal cages?,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 102, p. 103455, Feb. 2020, doi: 10.1016/j.jmbbm.2019.103455.
    [50] G. M. K. Ostberg and J. C. Seferis, “Annealing effects on the crystallinity of polyetheretherketone (PEEK) and its carbon fiber composite,” Journal of Applied Polymer Science, vol. 33, no. 1, pp. 29–39, 1987, doi: 10.1002/app.1987.070330103.
    [51] “Crystallization and melting behaviors of poly(aryletheretherketone) (PEEK) on origin of double melting peaks - Bas - 1994 - Journal of Applied Polymer Science - Wiley Online Library.” https://onlinelibrary.wiley.com/doi/abs/10.1002/app.1994.070531305 (accessed Aug. 16, 2022).
    [52] G. Zhang, H. Liao, M. Cherigui, J. Paulo Davim, and C. Coddet, “Effect of crystalline structure on the hardness and interfacial adherence of flame sprayed poly(ether–ether–ketone) coatings,” European Polymer Journal, vol. 43, no. 3, pp. 1077–1082, Mar. 2007, doi: 10.1016/j.eurpolymj.2006.12.039.
    [53] T. Kunugi, T. Hayakawa, and A. Mizushima, “Preparation of high modulus and high strength PEEK film by the zone drawing/annealing method,” Polymer, vol. 32, no. 5, pp. 808–813, Jan. 1991, doi: 10.1016/0032-3861(91)90504-C.
    [54] “Full article: Extrusion-based additive manufacturing of PEEK for biomedical applications.” 93https://www.tandfonline.com/doi/full/10.1080/17452759.2015.1097053 (accessed Aug. 16, 2022).
    [55] D. Zhao, T. Li, H. Zhang, W. Liu, G. Yue, and L. Pan, “Effects of processing parameters and annealing on the mechanical properties of polyether ether ketone(PEEK) via fused deposition modeling(FDM),” in 2021 3rd International Academic Exchange Conference on Science and Technology Innovation (IAECST), Dec. 2021, pp. 1020–1026. doi: 10.1109/IAECST54258.2021.9695585.
    [56] Basgul C., Yu T., MacDonald D. W., Siskey R., Marcolongo M., and Kurtz S. M., “Structure–property relationships for 3D-printed PEEK intervertebral lumbar cages produced using fused filament fabrication,” Journal of Materials Research, vol. 33, no. 14, pp. 2040–2051, Jul. 2018, doi: 10.1557/jmr.2018.178.
    [57] B. Harris, “ENGINEERING COMPOSITE MATERIALS,” p. 193.
    [58] M. Regis, A. Bellare, T. Pascolini, and P. Bracco, “Characterization of thermally annealed PEEK and CFR-PEEK composites: Structure-properties relationships,” Polymer Degradation and Stability, vol. 136, pp. 121–130, Feb. 2017, doi: 10.1016/j.polymdegradstab.2016.12.005.
    [59] J. J. Tierney and J. W. Gillespie Jr., “Crystallization kinetics behavior of PEEK based composites exposed to high heating and cooling rates,” Composites Part A: Applied Science and Manufacturing, vol. 35, no. 5, pp. 547–558, May 2004, doi: 10.1016/j.compositesa.2003.12.004.
    [60] Z. Ma and R. Xi, “Low temperature properties of composite materials,” Vac. Cryog, vol. 2, pp. 22–29, 1985.
    [61] C. N. Velisaris and J. C. Seferis, “Crystallization kinetics of polyetheretherketone (peek) matrices,” Polymer Engineering & Science, vol. 26, no. 22, pp. 1574–1581, 1986, doi: 10.1002/pen.760262208.
    [62] P. Patel, T. R. Hull, R. W. McCabe, D. Flath, J. Grasmeder, and M. Percy, “Mechanism of thermal decomposition of poly(ether ether ketone) (PEEK) from a review of decomposition studies,” Polymer Degradation and Stability, vol. 95, no. 5, pp. 709–718, May 2010, doi: 10.1016/j.polymdegradstab.2010.01.024.
    [63] J. Song et al., “Fretting Wear Study of PEEK-Based Composites for Bio-implant Application,” Tribol Lett, vol. 65, no. 4, p. 150, Oct. 2017, doi: 10.1007/s11249-017-0931-8.
    [64] “Effect of annealing on properties and performance of HfO2/SiO2 optical coatings for UV-applications.” https://www.spiedigitallibrary.org/conference-proceedings-ofspie/11687/116871U/Effect-of-annealing-on-properties-and-performance-of-HfO2-SiO2/10.1117/12.2578893.short?SSO=1 (accessed Jan. 28, 2023).
    [65] “Crystallization and mechanical properties of MgO/Al2O3/SiO2/ZrO2 glass-ceramics 94with and without the addition of yttria - ScienceDirect.” https://www.sciencedirect.com/science/article/abs/pii/S1293255811002962?casa_token=-aBO9KrfEh4AAAAA:KXKqTiJqVvH9VXbdwwqoUWXr3MtOW858UhYy9ssP8aibgnucQxP_EvN_Z1KshImqBBiJCkUgQCg#bib25 (accessed Jan. 28, 2023).
    [66] “Influence of Annealing Temperature on the Structural and Electrical Properties of SiDoped Ferroelectric Hafnium Oxide | ACS Applied Electronic Materials.” https://pubs.acs.org/doi/full/10.1021/acsaelm.1c00590?casa_token=96ShYQ1mCMAAAAA%3AjGNR5zIK2aXfqmIBXXH9lLH2-ElCplrG2pxT6WipRZwh1J7u89cg3vv8i_jwSYUsAwYBZYLax32H2yXV (accessed Jan. 28, 2023).
    [67] “熱處理條件對聚乳酸 /二氧化矽奈米複合物之熱性質的影響__臺灣博碩士論文知識加值系統 .” https://ndltd.ncl.edu.tw/cgibin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22100YZU05063099%22.&searchmode=basic#XXX (accessed Jan. 28, 2023).
    [68] P. Sikder, B. T. Challa, and S. K. Gummadi, “A comprehensive analysis on the processingstructure-property relationships of FDM-based 3-D printed polyetheretherketone (PEEK) structures,” Materialia, vol. 22, p. 101427, May 2022, doi: 10.1016/j.mtla.2022.101427.
    [69] W. Z. Wu, P. Geng, J. Zhao, Y. Zhang, D. W. Rosen, and H. B. Zhang, “Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing,” Materials Research Innovations, vol. 18, no. sup5, pp. S5-12-S5-16, Aug. 2014, doi: 10.1179/1432891714Z.000000000898.
    [70] K. M. Rahman, T. Letcher, and R. Reese, “Mechanical Properties of Additively Manufactured PEEK Components Using Fused Filament Fabrication,” presented at the ASME 2015 International Mechanical Engineering Congress and Exposition, Mar. 2016. doi: 10.1115/IMECE2015-52209.
    [71] M. Vaezi and S. Yang, “Extrusion-based additive manufacturing of PEEK for biomedical applications,” Virtual and Physical Prototyping, vol. 10, no. 3, pp. 123–135, Jul. 2015, doi: 10.1080/17452759.2015.1097053.
    [72] A. El Magri, K. El Mabrouk, S. Vaudreuil, H. Chibane, and M. E. Touhami, “Optimization of printing parameters for improvement of mechanical and thermal performances of 3D printed poly(ether ether ketone) parts,” Journal of Applied Polymer Science, vol. 137, no. 37, p. 49087, 2020, doi: 10.1002/app.49087.
    [73] C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao, and C. Shi, “Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material,” Journal of Materials Processing Technology, vol. 248, pp. 1–7, Oct. 2017, doi: 9510.1016/j.jmatprotec.2017.04.027

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE