| 研究生: |
楊依婷 Yang, I-Ting |
|---|---|
| 論文名稱: |
丙酮酸去氫激酶 1 在順鉑誘導癌細胞死亡中所扮演的角色 The potential role of PDK1 in Cisplantin-induced head and neck squamous cell death |
| 指導教授: |
陳炳焜
Chen, Ben-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 藥理學研究所 Department of Pharmacology |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 78 |
| 中文關鍵詞: | 丙酮酸去氫激酶 1 、抗藥性細胞 |
| 外文關鍵詞: | PDK1, Drug resistant cell |
| 相關次數: | 點閱:59 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌細胞代謝的轉換對於癌細胞的轉移和產生抗藥性中占重要的角色。丙酮酸脫氫激酶1 是代謝相關的基因之一,它的功能從氧化磷酸化轉換為糖解作用,其中參與癌細胞的生存及生長。在丙酮酸脫氫激酶1 參與抗藥性細胞的作用仍然不清楚,本篇的研究結果顯示在癌細胞中若失去丙酮酸脫氫激酶 1 再處理順鉑,會增強順鉑藥物對癌細胞株HONE-1 毒殺性。其毒殺能力是藉由增強活性氧類,來造成細胞死亡;在去除丙酮酸去氫激酶 1 的抗藥性細胞株 HONE-1-C15 ,則不透過增強活性類氧來導致抗藥性細胞死亡。同時,我們發現抗藥性細胞的粒線體膜電位及活性氧類都較原來細胞株低,並且粒線體複合物的活性在抗藥性細胞有所改變。除此之外,我們也發現抗藥性細胞的侵襲能力降低,在動物實驗觀察抗藥性細胞穿透血管能力也無改變,然而,抗藥性細胞株一旦受到藥物刺激之下,僅存活下來的細胞其轉移能力會較原本細胞株高。除此,去除丙酮酸去氫激酶 1 會增加順鉑化療藥物敏感性導致抗藥性細胞的死亡,當中的機轉至今還不清楚,日後研究方向會朝向這些抗藥性細胞,受到藥物刺激之下所存活細胞其增加轉移能力是受到哪些因素所調控。
Metabolic disorder is a hallmark of oncogenic transformation and associated with tumor metastasis and anti-cancer drug resistance. The metabolic enzyme pyruvate dehydrogenase kinase 1(PDK1) participates in tumor survival and growth through switching oxidative
phosphorylation to glycolytic metabolism. However, the effect of PDK1 on drug resistant cells in the regulation of mitochondrial reprograming remains unclear. In this study, we found that the depletion of PDK1 enhanced cisplatin-induced cell death by using cell proliferation and apoptosis assays. The knockdown of PDK1 in HONE-1 parental but not HONE-1 cisplatin resistant cells enhanced apoptosis through enhancing the reactive oxygen
species (ROS) levels. In addition, the resistant cells presented lower expression of ROS levels and mitochondrial membrane potential than parental cells. The complex activities of mitochondria were also changed in drug resistant cells. To study the metastatic properties
of resistant cells, the invasion and extravasation assays were used. We found that even reduced invasion ability in resistant cells, no changed of extravasation was observed compared to parental cells. However, the higher migration ability was observed in the survival of cisplatin-treated resistant cells. Taken together, these results suggest that PDK1 plays roles in regulation of cisplatin-induced cell death. However, the pathway that involved in PDK1-regulated cell metastasis in cisplatin-treated resistant cells remains unknown. Theincrease of invasive ability in cisplatin-treated resistant cells further suggests that external factors may contribute to initiate tumor migration.
1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet‐Tieulent J, Jemal A. Global cancer
statistics, 2012. CA: A Cancer Journal For Clinicians 2015; 65: 87‐108.
2 Winquist E, Agbassi C, Meyers BM, Yoo J, Chan KK, Head et al. Systemic therapy in
the curative treatment of head and neck squamous cell cancer: a systematic
review. Journal Of Otolaryngology ‐ Head & Neck Surgery = Le Journal d'oto‐rhinolaryngologie
et de chirurgie cervico‐faciale 2017; 46: 29.
3 Price KA, Cohen EE. Current treatment options for metastatic head and neck
cancer. Current Treatment Options In Oncology 2012; 13: 35‐46.
4 Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect:
the metabolic requirements of cell proliferation. Science 2009; 324: 1029‐1033.
5 Warburg O. On the origin of cancer cells. Science 1956; 123: 309‐314.
6 Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nature
Reviews Cancer 2011; 11: 85‐95.
7 Wigfield SM, Winter SC, Giatromanolaki A, Taylor J, Koukourakis ML, Harris AL.
PDK‐1 regulates lactate production in hypoxia and is associated with poor
prognosis in head and neck squamous cancer. British Journal Of Cancer 2008; 98:
1975‐1984.
8 Wouters BG, Koritzinsky M. Hypoxia signalling through mTOR and the unfolded
protein response in cancer. Nature Reviews Cancer 2008; 8: 851‐864.
9 Pouyssegur J, Dayan F, Mazure NM. Hypoxia signalling in cancer and approaches to
enforce tumour regression. Nature 2006; 441: 437‐443.
10 Semenza GL. Targeting HIF‐1 for cancer therapy. Nature Reviews Cancer 2003; 3:
721‐732.
11 Semenza GL. Hypoxia‐inducible factors in physiology and medicine. Cell 2012; 148:399‐408.
12 Sabharwal SS, Schumacker PT. Mitochondrial ROS in cancer: initiators, amplifiers or
an Achilles' heel? Nature Reviews Cancer 2014; 14: 709‐721.
13 Cai H, Li Z, Dikalov S, Holland SM, Hwang J, Jo H et al. NAD(P)H oxidase‐derived
hydrogen peroxide mediates endothelial nitric oxide production in response to
angiotensin II. The Journal Of Biological Chemistry 2002; 277: 48311‐48317.
14 Felty Q, Xiong WC, Sun D, Sarkar S, Singh KP, Parkash J et al. Estrogen‐induced
mitochondrial reactive oxygen species as signal‐transducing messengers.
Biochemistry 2005; 44: 6900‐6909.
15 Zhang DX, Gutterman DD. Mitochondrial reactive oxygen species‐mediated
signaling in endothelial cells. American Journal Of Physiology Heart And Circulatory
Physiology 2007; 292: H2023‐2031.
16 Lebovitz RM, Zhang H, Vogel H, Cartwright J, Jr., Dionne L, Lu N et al.
Neurodegeneration, myocardial injury, and perinatal death in mitochondrial
superoxide dismutase‐deficient mice. Proceedings Of the National Academy Of
Sciences Of The United States of America 1996; 93: 9782‐9787.
17 McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND et al. Pyruvate
dehydrogenase complex activity controls metabolic and malignant phenotype in
cancer cells. The Journal Of Biological Chemistry 2008; 283: 22700‐22708.
18 Zhang W, Zhang SL, Hu X, Tam KY. Targeting Tumor Metabolism for Cancer
Treatment: Is Pyruvate Dehydrogenase Kinases (PDKs) a Viable Anticancer Target?
International Journal Of Biological Sciences 2015; 11: 1390‐1400.
19 Kaplon J, Zheng L, Meissl K, Chaneton B, Selivanov VA, Mackay G et al. A key role
for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene‐induced
senescence. Nature 2013; 498: 109‐112.
20 Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M et al. HIF‐1alpha‐PDK1
axis‐induced active glycolysis plays an essential role in macrophage migratory
capacity. Nature Communications 2016; 7: 11635.
21 Li Q, Gardner K, Zhang L, Tsang B, Bostick‐Bruton F, Reed E. Cisplatin induction of
ERCC‐1 mRNA expression in A2780/CP70 human ovarian cancer cells. The Journal
Of Biological Chemistry 1998; 273: 23419‐23425.
22 Kartalou M, Essigmann JM. Mechanisms of resistance to cisplatin. Mutation
Research 2001; 478: 23‐43.
23 Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance.
Oncogene 2003; 22: 7265‐7279.
24 Shen DW, Pouliot LM, Hall MD, Gottesman MM. Cisplatin resistance: a cellular selfdefense
mechanism resulting from multiple epigenetic and genetic changes.
Pharmacological Reviews 2012; 64: 706‐721.
25 Andrews PA, Howell SB. Cellular pharmacology of cisplatin: perspectives on
mechanisms of acquired resistance. Cancer Cells (Cold Spring Harbor, NY : 1989)
1990; 2: 35‐43.
26 Parker RJ, Eastman A, Bostick‐Bruton F, Reed E. Acquired cisplatin resistance in
human ovarian cancer cells is associated with enhanced repair of cisplatin‐DNA
lesions and reduced drug accumulation. The Journal Of Clinical Investigation 1991;
87: 772‐777.
27 Meister A, Anderson ME. Glutathione. Annual review of biochemistry. Ann. Rev.
Biochem. 1983; 52: 711‐760.
28 Funato T, Ishii T, Kanbe M, Scanlon KJ, Sasaki T. Reversal of cisplatin resistance in
vivo by an anti‐fos ribozyme. In Vivo 1997; 11: 217‐220.
29 Leonetti C, Biroccio A, Candiloro A, Citro G, Fornari C, Mottolese M et al. Increase
of cisplatin sensitivity by c‐myc antisense oligodeoxynucleotides in a human
metastatic melanoma inherently resistant to cisplatin. Clinical Cancer Research : an
official journal of the American Association for Cancer Research 1999; 5: 2588‐
2595.
30 Gong JG, Costanzo A, Yang HQ, Melino G, Kaelin WG, Jr., Levrero M et al. The
tyrosine kinase c‐Abl regulates p73 in apoptotic response to cisplatin‐induced DNA
damage. Nature 1999; 399: 806‐809.
31 Zhao R, Rabo YB, Egyhazi S, Andersson A, Edgren MR, Linder S et al. Apoptosis and
c‐jun induction by cisplatin in a human melanoma cell line and a drug‐resistant
daughter cell line. Anti‐Cancer Drugs 1995; 6: 657‐668.
32 Fan S, el‐Deiry WS, Bae I, Freeman J, Jondle D, Bhatia K et al. p53 gene mutations
are associated with decreased sensitivity of human lymphoma cells to DNA
damaging agents. Cancer Research 1994; 54: 5824‐5830.
33 Husain I, Chaney SG, Sancar A. Repair of cis‐platinum‐DNA adducts by ABC
excinuclease in vivo and in vitro. Journal Of Bacteriology 1985; 163: 817‐823.
34 Aebi S, Kurdi‐Haidar B, Gordon R, Cenni B, Zheng H, Fink D et al. Loss of DNA
mismatch repair in acquired resistance to cisplatin. Cancer Research 1996; 56:
3087‐3090.
35 Jones SL, Hickson ID, Harris AL, Harnett PR. Repair of cisplatin‐DNA adducts by
protein extracts from human ovarian carcinoma. International Journal Of Cancer
1994; 59: 388‐393.
36 Kashani‐Sabet M, Lu Y, Leong L, Haedicke K, Scanlon KJ. Differential oncogene
amplification in tumor cells from a patient treated with cisplatin and 5‐fluorouracil.
European Journal Of Cancer 1990; 26: 383‐390.
37 Vaisman A, Masutani C, Hanaoka F, Chaney SG. Efficient translesion replication
past oxaliplatin and cisplatin GpG adducts by human DNA polymerase eta.
Biochemistry 2000; 39: 4575‐4580.
38 Rahman M, Hasan MR. Cancer Metabolism and Drug Resistance. Metabolites
2015; 5: 571‐600.
39 Wang YD, Li SJ, Liao JX. Inhibition of glucose transporter 1 (GLUT1)
chemosensitized head and neck cancer cells to cisplatin. Technology In Cancer
Research & Treatment 2013; 12: 525‐535.
40 Le Calve B, Rynkowski M, Le Mercier M, Bruyere C, Lonez C, Gras T et al. Long‐term
in vitro treatment of human glioblastoma cells with temozolomide increases
resistance in vivo through up‐regulation of GLUT transporter and aldo‐keto
reductase enzyme AKR1C expression. Neoplasia 2010; 12: 727‐739.
41 Bhattacharya B, Mohd Omar MF, Soong R. The Warburg effect and drug resistance.
British Journal Of Pharmacology 2016; 173: 970‐979.
42 Jang M, Kim SS, Lee J. Cancer cell metabolism: implications for therapeutic targets.
Experimental & Molecular Medicine 2013; 45: e45.
43 Seton‐Rogers S. Cancer metabolism: feed it forward. Nature Reviews Cancer 2011;
11: 461.
44 Kwon OH, Kang TW, Kim JH, Kim M, Noh SM, Song KS et al. Pyruvate kinase M2
promotes the growth of gastric cancer cells via regulation of Bcl‐xL expression at
transcriptional level. Biochemical And Biophysical Research Communications 2012;
423: 38‐44.
45 Nishimura G, Taguchi T, Takahashi M, Shiono O, Komatsu M, Sano D et al. Phase II
trial of concurrent bio‐chemoradiotherapy using docetaxel, cisplatin, and
cetuximab for locally advanced head and neck squamous cell carcinoma. Cancer
Chemotherapy And Pharmacology 2016; 77: 1315‐1319.
46 Nibu KI, Hayashi R, Asakage T, Ojiri H, Kimata Y, Kodaira T et al. Japanese Clinical
Practice Guideline For Head And Neck Cancer. Auris, Nasus, Larynx 2017.
47 Lian S, Shao Y, Liu H, He J, Lu W, Zhang Y et al. PDK1 induces JunB, EMT, cell
migration and invasion in human gallbladder cancer. Oncotarget 2015; 6: 29076‐
29086.
48 Michelakis ED, Webster L, Mackey JR. Dichloroacetate (DCA) as a potential
metabolic‐targeting therapy for cancer. British Journal Of Cancer 2008; 99: 989‐
994.
49 Dai Y, Xiong X, Huang G, Liu J, Sheng S, Wang H et al. Dichloroacetate enhances
adriamycin‐induced hepatoma cell toxicity in vitro and in vivo by increasing
reactive oxygen species levels. PloS One 2014; 9: e92962.
50 Griss T, Vincent EE, Egnatchik R, Chen J, Ma EH, Faubert B et al. Metformin
Antagonizes Cancer Cell Proliferation by Suppressing Mitochondrial‐Dependent
Biosynthesis. PLoS Biology 2015; 13: e1002309.
51 Casares C, Ramirez‐Camacho R, Trinidad A, Roldan A, Jorge E, Garcia‐Berrocal JR.
Reactive oxygen species in apoptosis induced by cisplatin: review of
physiopathological mechanisms in animal models. European Archives Of Oto‐
Rhino‐Laryngology : Official Journal Of The European Federation Of Oto‐Rhino‐
Laryngological Societies 2012; 269: 2455‐2459.
52 Choi YM, Kim HK, Shim W, Anwar MA, Kwon JW, Kwon HK et al. Mechanism of
Cisplatin‐Induced Cytotoxicity Is Correlated to Impaired Metabolism Due to
Mitochondrial ROS Generation. PloS One 2015; 10: e0135083.
53 Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M et al. Mitochondriaros
crosstalk in the control of cell death and aging. Journal Of Signal Transduction
2012; 2012: 329635.
54 Fridovich I. Superoxide radical and superoxide dismutases. Annual Review Of
Biochemistry 1995; 64: 97‐112.
55 Chen X, Duan N, Zhang C, Zhang W. Survivin and Tumorigenesis: Molecular
Mechanisms and Therapeutic Strategies. Journal Of Cancer 2016; 7: 314‐323.
56 Wallace‐Brodeur RR, Lowe SW. Clinical implications of p53 mutations. Cellular And
Molecular Life Sciences : CMLS 1999; 55: 64‐75.
57 Karin M, Cao Y, Greten FR, Li ZW. NF‐kappaB in cancer: from innocent bystander to
major culprit. Nature Reviews Cancer 2002; 2: 301‐310.
58 Datta SR, Brunet A, Greenberg ME. Cellular Survival: A Play In Three Akts. Genes &
Development 1999; 13: 2905‐2927.
59 Kitahara H, Hirai M, Kato K, Bou‐Gharios G, Nakamura H, Kawashiri S. Eribulin
sensitizes oral squamous cell carcinoma cells to cetuximab via induction of
mesenchymal‐to‐epithelial transition. Oncology Reports 2016; 36: 3139‐3144.
60 Nurwidya F, Takahashi F, Murakami A, Takahashi K. Epithelial mesenchymal
transition in drug resistance and metastasis of lung cancer. Cancer Research And
Treatment : Official Journal Of Korean Cancer Association 2012; 44: 151‐156.
61 Esquivel‐Velazquez M, Ostoa‐Saloma P, Palacios‐Arreola MI, Nava‐Castro KE, Castro
JI, Morales‐Montor J. The role of cytokines in breast cancer development and
progression. Journal Of Interferon & Cytokine Research : The Official Journal Of The
International Society For Interferon And Cytokine Research 2015; 35: 1‐16.
62 Jeon JH, Kim DK, Shin Y, Kim HY, Song B, Lee EY et al. Migration and invasion of
drug‐resistant lung adenocarcinoma cells are dependent on mitochondrial activity.
Experimental & Molecular Medicine 2016; 48: e277.
63 Lu CW, Lin SC, Chien CW, Lin SC, Lee CT, Lin BW et al. Overexpression of pyruvate
dehydrogenase kinase 3 increases drug resistance and early recurrence in colon
cancer. The American Journal Of Pathology 2011; 179: 1405‐1414.
64 Wang M, Liao C, Hu Y, Qinwen P, Jiang J. Sensitization of breast cancer cells to
paclitaxel by dichloroacetate through inhibiting autophagy. Biochemical And
Biophysical Research Communications 2017.
65 Ferriero R, Iannuzzi C, Manco G, Brunetti‐Pierri N. Differential inhibition of PDKs by
phenylbutyrate and enhancement of pyruvate dehydrogenase complex activity by
combination with dichloroacetate. Journal Of Inherited Metabolic Disease 2015;
38: 895‐904.
66 Dupuy F, Tabaries S, Andrzejewski S, Dong Z, Blagih J, Annis MG et al. PDK1‐
Dependent Metabolic Reprogramming Dictates Metastatic Potential in Breast
Cancer. Cell Metabolism 2015; 22: 577‐589.
67 Kaufmann P, Engelstad K, Wei Y, Jhung S, Sano MC, Shungu DC et al.
Dichloroacetate causes toxic neuropathy in MELAS: a randomized, controlled
clinical trial. Neurology 2006; 66: 324‐330.
68 Viollet B, Guigas B, Sanz Garcia N, Leclerc J, Foretz M, Andreelli F. Cellular and
molecular mechanisms of metformin: an overview. Clinical Science 2012; 122: 253‐
270.
69 Alexander S, Friedl P. Cancer invasion and resistance: interconnected processes of
disease progression and therapy failure. Trends In Molecular Medicine 2012; 18:
13‐26.
70 Chen W, Dong J, Haiech J, Kilhoffer MC, Zeniou M. Cancer Stem Cell Quiescence
and Plasticity as Major Challenges in Cancer Therapy. Stem Cells International
2016; 2016: 1740936.
71 Geiger TR, Peeper DS. Metastasis mechanisms. Biochimica Et Biophysica Acta
2009; 1796: 293‐308.
72 O'Connor DS, Grossman D, Plescia J, Li F, Zhang H, Villa A et al. Regulation of
apoptosis at cell division by p34cdc2 phosphorylation of survivin. Proceedings Of
The National Academy Of Sciences Of The United States Of America 2000; 97:
13103‐13107.
73 Tan W, Naniche N, Bogush A, Pedrini S, Trotti D, Pasinelli P. Small peptides against
the mutant SOD1/Bcl‐2 toxic mitochondrial complex restore mitochondrial
function and cell viability in mutant SOD1‐mediated ALS. The Journal Of
Neuroscience : The Official Journal Of The Society For Neuroscience 2013; 33:
11588‐11598.
74 Liou GY, Storz P. Reactive oxygen species in cancer. Free Radical Research 2010; 44:
479‐496.
75 Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress.
Current Biology : CB 2014; 24: R453‐462.
76 K. Maiti A. Reactive Oxygen Species Reduction is a Key Underlying Mechanism of
Drug Resistance in Cancer Chemotherapy. Chemotherapy: Open Access 2012; 01.
77 Hu Y, Rosen DG, Zhou Y, Feng L, Yang G, Liu J et al. Mitochondrial manganesesuperoxide
dismutase expression in ovarian cancer: role in cell proliferation and
response to oxidative stress. The Journal Of Biological Chemistry 2005; 280: 39485-39492.
78 Weinberg SE, Chandel NS. Targeting mitochondria metabolism for cancer therapy.
Nature Chemical Biology 2015; 11: 9‐15.
79 Santidrian AF, Matsuno‐Yagi A, Ritland M, Seo BB, LeBoeuf SE, Gay LJ et al.
Mitochondrial complex I activity and NAD+/NADH balance regulate breast cancer
progression. The Journal Of Clinical Investigation 2013; 123: 1068‐1081