簡易檢索 / 詳目顯示

研究生: 賴建廷
Lai, Jian-Ting
論文名稱: 以有機金屬化學氣相沉積法磊晶氮化物半導體於石墨烯作為葡萄糖感測的元件
Fabrication and investigation of GaN-based epitaxial growth on graphene by MOCVD and its application on glucose sensor
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 70
中文關鍵詞: 石墨稀氮化鎵化合物半導體葡萄糖感測生物感測器
外文關鍵詞: graphene, gallium nitride semiconductor, glucose biosensor
相關次數: 點閱:122下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,主要探討氮化鎵晶體成長於石墨烯以製作葡萄糖感測器元件,磊晶於石墨烯上特殊的氮化鎵纖鋅礦結構,其大的體表面積有效的增加接觸葡萄糖的面積以及高導電率的石墨烯以利於葡萄糖感測器的製作。
    由於糖尿病是人類目前的重大疾病之一在台灣地區,於1987年起糖尿病始終高居時大死亡原因的前五名。糖尿病為終生性疾病,罹患即無法根治,控制血糖含量是唯一的治療方針,在臨床診斷上,「血糖感測器」是掌握糖尿病病情最重要的指標工具,然而醫院內大型檢測儀器有採血量多,耗時長,操作技術門檻高等缺點,病人無法在日常生活中及時的自我監測,因此攜帶性生物感測器變應運而生。氮化鎵/石墨烯的元件便可以做為葡萄糖感測器的量測,可以得到高靈敏度30.73 (μA/cm2-mM) ,反應時間很短只需要短短5 s的時間,偵測極限為0.8(mM/L)且由於穩定的氮化鎵/石墨烯元件可以在室溫下超過30天的保存時間。

    此實驗運用不同的參數調變去更進一步提升氮化鎵的晶體品質以及元件特性。在此實驗中,不同以往的緩衝層例如低溫氮化鎵、氮化鋁等等,我們採用石墨烯此一中間層來當作我們的緩衝層,可以有效的幫助氮化鎵晶體在垂直方向的成長,且石墨稀利用凡得瓦爾力的鍵結方式且可轉移的特性,皆可以成長出高品質的氮化鎵晶體。最重要的是石墨烯是一個非常好的導電體,可以有效的將葡萄糖分解出來的電子訊號進行傳遞。
    首先針對石墨烯的轉移作探討,由於石墨烯是利用凡得瓦爾力的鍵結所以可以轉移至任意的基板,經由拉曼光譜儀的量測可以得知石墨烯的品質及層數,經由量測可得知ID/IG = 0.54 ,顯示了石墨烯的品質是相當不錯的,而從I2D/IG = 1.19 我們可以知道此石墨烯是屬於多層的層數,這樣的結果對於我們磊晶氮化鎵是一個相當不錯的緩衝層品質。接著則是利用有機金屬氣相沉積法磊晶氮化鎵,在磊晶層成長過程,為獲得高品質的單晶磊晶層,有機金屬化學氣相沈積系統的調變參數繁多,常見的重要參數依序為成長溫度、厚度、流量、壓力、五三族原子比例、升溫速度摻雜元素及載體氣體選擇等,或採用脈衝式流量控制法、腔體內回火熱處理法、磊晶後二次回火熱處理法等,皆可以獲得高品質的磊晶層。

    In this paper, it focus on the growth of gallium nitride on graphene in order to produce the glucose biosensor. In particular gallium nitride epitaxial wurtzite structure on graphene have a large surface area to contact the glucose. High conductivity graphene also have the superior property to produce the glucose biosensor.
    Diabetes is one of the top major five human diseases which cause the many deaths in Taiwan from 1987. Diabetes is lifelong disease that could not be cured. Controlling the blood sugar is the only treatment in clinical diagnosis. Therefore, glucose biosensor is developed to maintain the diabetic condition tool which is important index. However, the hospital has the shortcomings such as a larger volume of blood, more time-consuming operation and higher technical threshold by testing equipment. The patient unable to timely self-monitoring every day, so portable glucose biosensor come into being developed. GaN/graphene device could be applied as glucose sensor at the first time and have high sensitivity (30.73μA/cm2_ mM), low response time (5s), detection time (0.8 mM) and long storage time(over 30 day). Non-enzymatic glucose sensors based semiconductor materials (GaN), which are chemically and thermally stable.
    The different modulation parameters to further enhance the crystal quality and device properties. In this experiment, we use the graphene to replace the earlier buffer layer such as low temperature gallium nitride, aluminum nitride, etc. Graphene intermediate layer could effectively could be used to help the growth of gallium nitride in the vertical direction. Furthermore, the lattice mismatch could be ignored because graphene is bonded by the van der waals force, which is able to grow high quality gallium nitride crystals. The most important is that graphene is a very good conductor and can play the role to transfer the electrical signal produced from the glucose.
    First of all, we investigated the graphene transfer quality. Due to the van der waal property, graphene could be transferred to arbitrary substrate. Then, Raman Spectroscopy could displayed the graphene quality and layers. It could be measured that ID/IG = 0.54 showed the quality is quite good, and I2D/IG = 1.19 showed graphene is multilayer. This result is a pretty good for the growth of gallium nitride to apply as the intermediate layer. Next is the growth of gallium nitride by the Metal Organic Vapor Deposition (MOCVD). In order to get the high quality crystals, many modulation parameters have been made. The commonly important parameters, such as growth temperature, thickness, flow, pressure, V/III ratio, heating rate, carrier gas, pulse flow control method, heat treatment chamber, and epitaxial after the second heat treatment method, etc…, all could get high quality epitaxial layer. Finally, the GaN/graphene structure was used to measure the concentration of glucose and a linear relation was found. During this work, it is the first time that GaN/graphene was proved can be used to measure the glucose.

    Chapter 1 Introduction 1 1-1 Research background 1 1-2 Motivation 5 1-3 Organization of this thesis 5 Reference-Chapter 1 12 Chapter 2 The Principle and development of Electrochemical Biosensor 14 2-1 Diabetes mellitus 14 2-2 Electrochemical biosensor 16 2-3 Objective 23 Reference-Chapter 2 26 Chapter 3 High quality GaN Epitaxial Growth on Graphene 27 3-1 Introduction 27 3-2 Experimental detail 28 3-2-1 Flow diagram 28 3-2-2 Graphene transfer 29 3-2-3 The growth of GaN 30 3-3 Results and discussion 31 3-5 Summary 35 Reference-Chapter 3 48 Chapter 4 Fabrication and Characterization of a Highly Sensitive Glucose Biosensor Based on Synthesis of Micro-structure GaN on Graphene 50 4-1 Introduction 50 4-2 Glucose biosensor mechanism 51 4-3 Experimental details 53 4-4 Result and Discussion 53 4-4-1 The redox current by different glucose concentration 53 4-4-2 Response time and detection time 54 4-4-3 Stability and storage time of the biosensor 54 4-4-4 Effect of scan rate 55 4-5 Summary 55 Reference-Chapter 4 65 Chapter 5 Conclusion and Future prospects 67 5-1 Conclusion 67 5-2 Future prospects 68 Reference-Chapter 5 70

    [1] E. Butter, G. Fitzl, D. Hirsch, G. Leonhardt, W. Seifert, and G. Preschel, "The deposition of group III nitrides on silicon substrates," Thin Solid Films, vol. 59, pp. 25-31, 1979.
    [2] A. Krost and A. Dadgar, "GaN-based optoelectronics on silicon substrates," Materials Science and Engineering: B, vol. 93, pp. 77-84, 2002.
    [3] Yole Développment, “Power GaN market”, 2014.
    [4] E. Butter, G. Fitzl, D. Hirsch, G. Leonhardt, W. Seifert, and G. Preschel, "The deposition of group III nitrides on silicon substrates," Thin Solid Films, vol. 59, pp. 25-31, 1979.
    [5] A. Watanabe, T. Takeuchi, K. Hirosawa, H. Amano, K. Hiramatsu, and I. Akasaki, "The growth of single crystalline GaN on a Si substrate using AIN as an intermediate
    [6] A. Dadgar, J. Bläsing, A. Diez, A. Alam, M. Heuken, and A. Krost, "Metalorganic chemical vapor phase epitaxy of crack-free GaN on Si (111) exceeding 1 μm in thickness," Japanese Journal of Applied Physics, vol. 39, p. L1183, 2000.
    [7] J. Bläsing, A. Reiher, A. Dadgar, A. Diez, and A. Krost, "The origin of stress reduction by low-temperature AlN interlayers," Applied physics letters, vol. 81, pp. 2722-2724, 2002.
    [8] A. Dadgar, M. Poschenrieder, A. Reiher, J. Bläsing, J. Christen, A. Krtschil, et al., "Reduction of stress at the initial stages of GaN growth on Si (111)," Applied physics letters, vol. 82, pp. 28-30, 2003.
    [9] K. Zang, Y. Wang, L. Wang, S. Chow, and S. Chua, "Defect reduction by periodic SiNx interlayers in gallium nitride grown on Si (111)," Journal of applied physics, vol. 101, pp. 93502-93502, 2007.
    [10] A. Mazid Munshi and Helge Weman “Advances in semiconductor nanowire growth on graphene” P hys. Status Solidi RRL 7, No. 10, 713–726 (2013) / DOI 10.1002/pssr.201308010
    [11] Tehrani, Z. (2014-09-01). "Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker". 2DMaterials 1:025004. Bibcode:2014TDM.....1b5004T.doi:10.1088/2053-1583/1/2/025004
    [12] Christian Punckt,a Michael A. Pope,a Jun Liu,b Yuehe Lin,b Ilhan A. Aksay “Electrochemical Performance of Graphene as Effected by Electrode Porosity and Graphene Functionalization” Electroanalysis 2010, 22, No. 23, 2834 – 2841
    [13] Siou-Yi Lin, Shoou-Jinn Chang, and Ting-Jen Hsueh “ZnO nanowires modified with Au nanoparticles for nonenzymatic amperometric sensing of glucose APPLIED PHYSICS LETTERS 104, 193704 (2014)
    [14] Richard L. McCreery “Advanced Carbon Electrode Materials for Molecular Electrochemistry” Chem. Rev. 2008, 108, 2646–2687
    [15] Tran Viet Cuong a , Viet Hung Pham a , Jin Suk Chung a , Eun Woo Shin a “Solution-processed ZnO-chemically converted graphene gas sensor” ,ScienceDirect Materials Letters 64 (2010) 2479–2482
    [16] Hyeun Joong Yoona, Do Han Junb, Jin Ho Yanga, Zhixian Zhouc, “Carbon dioxide gas sensor using a graphene sheet” ,ScienceDirect Sensors and Actuators B 157 (2011) 310–313
    [17] Lei Liao1 , Yung-Chen Lin2 , Mingqiang Bao3 , Rui Cheng2 , Jingwei Bai2 , Yuan Liu2 , “High-speed graphene transistors with a self-aligned nanowire gate” NATURE| Vol 467| 16 September 2010
    [18] Xuesong Li, Yanwu Zhu, Weiwei Cai, Mark Borysiak, Boyang Han,† “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes” NANO LETTERS 2009 Vol. 9, No. 12 4359-4363
    [1] 王少君 一般報導 科學苞展2007年12月,420期
    [2] Khaled A. Soliman1,2, Dieter M. Kolb1,§, Ludwig A. Kibler and Timo Jacob1”Restructuring of an Ir(210) electrode surface by potential cycling” Beilstein J. Nanotechnol. 2014, 5, 1349–1356.
    [3] Yau-Ren Nian and Hsisheng Teng,z “Nitric Acid Modification of Activated Carbon Electrodes for Improvement of Electrochemical Capacitance” Journal of The Electrochemical Society, 149 ~8! A1008-A1014 ~2002!
    [4] Richard L. McCreery“Advanced Carbon Electrode Materials for Molecular Electrochemistry” Chem. Rev. 2008, 108, 2646–2687
    [5] Yuyan Shao,a Sheng Zhang,a Mark H. Engelhard,a Guosheng Li,a Guocheng Shao,a “Nitrogen-doped graphene and its electrochemical applications†” This journal is ª The Royal Society of Chemistry 2010 J. Mater. Chem., 2010, 20, 7491–7496 | 7491
    [6] Christian Punckt, a Michael A. Pope, a Jun Liu, b Yuehe Lin, b Ilhan A. Aksay “Electrochemical Performance of Graphene as Effected by Electrode Porosity and Graphene Functionalization” Electroanalysis 2010, 22, No. 23, 2834 – 2841
    [7] Ming Zhang, Danni Lei, Zhifeng Du, Xiaoming Yin, Libao Chen, Qiuhong Li, Yanguo Wang and Taihong Wang“Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions” This journal is (c) The Royal Society of Chemistry 2010
    [8] By Nai Gui Shang, Pagona Papakonstantinou, Martin McMullan, Ming Chu “Catalyst-Free Efficient Growth, Orientation and Biosensing Properties of Multilayer Graphene Nanoflake Films with Sharp Edge Planes” Adv. Funct. Mater. 2008, 18, 3506–3514
    [9] Richard L. McCreery “Advanced Carbon Electrode Materials for Molecular Electrochemistry” Chem. Rev. 2008, 108, 2646–2687
    [10] Denis Menshykau, Richard G. Compton “The Influence of Electrode Porosity on Diffusional Cyclic Voltammetry” Electroanalysis 20, 2008, No. 22, 2387 – 2394
    [1] A. Mazid Munshi and Helge Weman* “Advances in semiconductor nanowire growth on graphene” P hys. Status Solidi RRL 7, No. 10, 713–726 (2013) / DOI 10.1002/pssr.201308010
    [2] Tae Hoon Seo1, Ah Hyun Park2, Sungchan Park1, Yong Hwan Kim3,4 “Direct growth of GaN layer on carbon nanotube-graphene hybrid structure and its application for light emitting diodes” SCIENTIFIC REPORTS | 5 : 7747 | DOI: 10.1038/srep07747
    [3] Hyeonjun Baek,,§ Chul-Ho Lee,§ Kunook Chung,† and Gyu-Chul Yi,† “Epitaxial GaN Microdisk Lasers Grown on Graphene Microdots” dx.doi.org/10.1021/nl401011x | Nano Lett. 2013, 13, 2782−2785
    [4] Janghyun Jo , Hyobin Yoo , Suk-In Park , Jun Beom Park , Sangmoon Yoon , Miyoung Kim , and Gyu-Chul Yi High-Resolution Observation of Nucleation and Growth Behavior of Nanomaterials Using a Graphene Template Adv. Mater. 2014, 26, 2011–2015
    [5] Neeraj Nepal1, Virginia D Wheeler1, Travis J Anderson1, Francis J Kub1, Michael A Mastro1, “Epitaxial Growth of III–Nitride/Graphene Heterostructures for Electronic Devices” Applied Physics Express 6 (2013) 061003
    [6] Kunook Chung,1 Chul-Ho Lee,1,2 Gyu-Chul Yi1 “Transferrable GaN Layers Grown on ZnO-Coated Graphene layers for Optoelectronic Devices” Science 330, 655 (2010)
    [7] Jeong Woo Shon1, Jitsuo Ohta1, Kohei Ueno1, Atsushi Kobayashi1, and Hiroshi Fujioka1,2 “Structural properties of GaN films grown on multilayer graphene films by pulsed sputtering” Applied Physics Express 7, 085502 (2014)
    [8] San Kang1, Arjun Mandal1,, Jae Hwan Chu2, Ji-Hyeon Park1, Soon-Yong Kwon2 & Cheul-Ro Lee1 “Ultraviolet photoconductive devices with an n-GaN nanorodgraphene hybrid structure synthesized by metal-organic chemical vapor deposition” ARTICLE in SCIENTIFIC REPORTS · JUNE 2015
    [9] Neeraj Nepal1, Virginia D Wheeler1, Travis J Anderson1, Francis J Kub1, Michael A Mastro1 “Epitaxial Growth of III–Nitride/Graphene Heterostructures for Electronic Devices” Applied Physics Express 6 (2013) 061003
    [10] Jae-Kyung Choi, Jae-Hoon Huh, Sung-Dae Kim, Daeyoung Moon, “One-step graphene coating of heteroepitaxial GaN films” IOP PUBLISHING Nanotechnology 23 (2012) 435603 (8pp)
    [11] Akira Ishii , 1, 2, Takaaki Tatani1, 2, Hiroki Asano1, 2, and Kengo Nakada1, 2 “Computational study for growth of GaN on graphite as 3D growth on 2D material” Phys. Status Solidi C 7 No. 2, 347–350 (2010) / DOI 10.1002/pssc.200982430
    [12] Tsutomu Araki1*, Satoru Uchimura1, Junichi Sakaguchi1, Yasushi Nanishi2,3, Tatsuya Fujishima4, Allen Hsu4, “Radio-frequency plasma-excited molecular beam epitaxy growth of GaN on graphene/Si(100) substrates” Applied Physics Express 7, 071001 (2014)
    [13] Cheng-Hung Shih1, Teng-Hsing Huang2, Ralf Schuber3, Yen-Liang Chen1, Liuwen Chang2, Ikai Lo1, Mitch MC Chou2 and Daniel M Schaadt3 “Microstructure of non-polar GaN on LiGaO2 grown by plasma-assisted MBE” Shih et al. Nanoscale Research Letters 2011, 6:425
    [14] Kunook Chung, Hyeonjun Beak, Youngbin Tchoe, Hongseok Oh, Hyobin Yoo, Miyoung Kim, and Gyu-Chul Yi “Growth and characterizations of GaN micro-rods on graphene films for flexible light emitting diodes” APL MATERIALS 2, 092512 (2014)
    [15] Kunook Chung1, Suk In Park1, Hyeonjun Baek1, Jin-Seok Chung2 and Gyu-Chul Yi1 “High-quality GaN films grown on chemical vapor-deposited graphene films” NPG Asia Materials (2012) 4, e24; doi:10.1038/am.2012.45
    [16] Mike Cooke “One-step GaN on sapphire through graphene coating “ semiconductorTODAY Compounds&AdvancedSilicon • Vol. 7 • Issue 9 • November 2012
    [1] V. T. Kostaki, A. B. Florou and M. I. Prodromidis, “Electrochemically induced chemical sensor properties in graphite screen-printed electrodes: The case of a chemical sensor for uranium” Electrochim. Acta, 56, 2011, 8857– 8860
    [2] A. Sassolas, L. J. Blum and B. D. Leca-Bouvier, “Immobilization strategies to develop enzymatic biosensors” Sens. Actuators, B 139, 2009, 214–221.
    [3] W. Geremedhin, M. Amare and S. Admassie, “Enhanced electrocatalytic determination of fenitrothion at graphene and silver–zirconia nanosensor” Electrochim. Acta, 87, 2013, 749–755.
    [4] Denis Menshykau, Richard G. Compton “The Influence of Electrode Porosity on Diffusional Cyclic Voltammetry” Electroanalysis 20, 2008, No. 22, 2387 – 2394
    [5] Guang-Xian Zhonga,c,e,1, Wen-Xin Zhanga,e,1, Yi-Ming Suna,e, “A nonenzymatic amperometric glucose sensor based on three dimensional nanostructure gold electrode” Sensors and Actuators B 212 (2015) 72–77
    [6] Rizwan Khana,1, Rafiq Ahmadb,1, Prabhakar Raia, Glucose-assisted synthesis of Cu2O shuriken-like nanostructures andtheir application as nonenzymatic glucose biosensors Sensors and Actuators B 203 (2014) 471–476
    [7] Lei Hana,b,1, Shu Zhanga,c,1, Lihui Hanc, Da-Peng Yanga, Chuantao Houa, Aihua Liua,b,∗”Porous gold cluster film prepared from Au@BSA microspheres forelectrochemical nonenzymatic glucose sensor” ScienceDirect, Electrochimica Acta 138 (2014) 109–114
    [8] Hengameh Fatemi a, Abbas Ali Khodadadi a,, Azam Anaraki Firooz b, Yadollah Mortazavi c “Apple-biomorphic synthesis of porous ZnO nanostructures for glucose direct electrochemical biosensor” ScienceDirect” Current Applied Physics 12 (2012) 1033e1038
    [9] Xiangfeng Chu ⇑, Xiaohua Zhu, Yongping Dong, Tongyun Chen, Mingfu Ye, Wenqi Sun”An amperometric glucose biosensor based on the immobilization of glucose oxidase on the platinum electrode modified with NiO doped ZnO nanorods” ScienceDirect, Journal of Electroanalytical Chemistry 676 (2012) 20–26
    [10] Ching-Ting Lee∗, Ying-Shuo Chiu “Photoelectrochemical passivated ZnO-based nanorod structured glucose biosensors using gate-recessed AlGaN/GaN ion-sensitive field-effect-transistors” ScienceDirect, Sensors and Actuators B 210 (2015) 756–761
    [11] Yang Lei a, Xiaoqin Yana, Jing Zhaoa, Xi Liub, Yu Songa, Ning Luoa, Yue Zhanga,b,∗ “Improved glucose electrochemical biosensor by appropriate immobilization of nano-ZnO” ScienceDirect, Colloids and Surfaces B: Biointerfaces 82 (2011) 168–172
    [12] Shin SoYoon a,1, Ananthakumar Ramadoss b,1, Balasubramaniam Saravanakumar a, Sang Jae Kim a,b,⇑ ” Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application” ScienceDirect, Journal of Electroanalytical Chemistry 717–718 (2014) 90–95
    [13] Man-man Guo, Peng-shu Wang, Chao-hui Zhou, Yue Xia, Wei Huang, Zelin Li∗ “An ultrasensitive non-enzymatic amperometric glucose sensor basedon a Cu-coated nanoporous gold film involving co-mediating” ScienceDirect, Sensors and Actuators B 203 (2014) 388–395
    [14] Zhi-Da Gao1,2, Yongfang Qu1, Tongtong Li1, Nabeen K. Shrestha3 & Yan-Yan Song1 “Development of Amperometric Glucose Biosensor Based on Prussian Blue Functionlized TiO2 Nanotube Arrays” SCIENTIFIC REPORTS | 4 : 6891 | DOI: 10.1038/srep06891
    [15] Ying Mua, Dongling Jia a, Yayun Hea, Yuqing Miaoa,b, Hai-Long Wub “Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential” ScienceDirect, Biosensors and Bioelectronics 26 (2011) 2948–2952
    [16] Chunyang Zhou, Lin Xu, Jian Song, Ruiqing Xing, Sai Xu, Dali Liu & Hongwei Song “Ultrasensitive non-enzymatic glucose sensor based on three-dimensional network of ZnO-CuO hierarchical nanocomposites by electrospinning” SCIENTIFIC REPORTS | 4 : 7382 | DOI: 10.1038/srep07382
    [17] Yue Zhang1,2, Zhuo Kang1, Xiaoqin Yan1 and Qingliang Liao1” ZnO nanostructures in enzyme biosensors” Published online 23 January 2015 | doi: 10.1007/s40843-015-0017-6
    [18] Siou-Yi Lin, Shoou-Jinn Chang, and Ting-Jen Hsueh “ZnO nanowires modified with Au nanoparticles for nonenzymatic amperometric sensing of glucose” Applied Physics Letters 104, 193704 (2014); doi: 10.1063/1.487502
    [1] Hyeonjun Baek,,§ Chul-Ho Lee, § Kunook Chung, and Gyu-Chul Yi,“Epitaxial GaN Microdisk Lasers Grown on Graphene Microdots” dx.doi.org/10.1021/nl401011x | Nano Lett. 2013, 13, 2782−2785
    [2] Ricard Prehn a, Llibertat Abad a, David Sanchez-Molas a, Marta Duch a, Neus Sabate a, “Microfabrication and characterization of cylinder micropillar array electrodes” ScienceDirect, Journal of Electroanalytical Chemistry 662 (2011) 361–370
    [3] Zhi-Da Gao1,2, Yongfang Qu1, Tongtong Li1, Nabeen K. Shrestha3 & Yan-Yan Song1 Development of Amperometric Glucose Biosensor Based on Prussian Blue Functionlized TiO2 Nanotube Arrays SCIENTIFIC REPORTS | 4 : 6891 | DOI: 10.1038/srep06891
    [4] Shin SoYoon a,1, Ananthakumar Ramadoss b,1, Balasubramaniam Saravanakumar a, Sang Jae Kim a,b, ” Novel Cu/CuO/ZnO hybrid hierarchical nanostructures for non-enzymatic glucose sensor application” ScienceDirect, Journal of Electroanalytical Chemistry 717–718 (2014) 90–95

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE