簡易檢索 / 詳目顯示

研究生: 謝怡萱
Hsieh, Yi-Hsuan
論文名稱: 教室內空氣品質之改善介入措施對學齡兒童的暴露及健康風險的影響
Effects of classroom air quality interventions on exposures and health risks of school children
指導教授: 蔡朋枝
Tsai, Perng-Jy
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 125
中文關鍵詞: PM2.5PM0.1空氣污染介入措施暴露模式推估健康風險評估
外文關鍵詞: PM2.5, PM0.1, Interventions, Exposure model, health risk assessment
相關次數: 點閱:107下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 長期暴露於室外空氣污染物會造成健康的不利影響,而室外空氣污染物易透過門窗隙縫進入到室內環境中間接影響室內空氣品質。屬於高敏感族群之學齡兒童一天之中大部分的時間都花費在學校,因此對於學校教室內之空氣污染物濃度,與學齡兒童健康風險之間的關係,便顯得更為重要。近年來發展出許多介入措施來改善室內環境中的空氣污染物濃度,但相關研究主要以空氣清淨機為主,其他介入措施使用之有效性尚無完整之研究。因此,本研究將對各種介入措施改善教室內之空氣品質之有效性進行評估,同時建立暴露推估模式,推估在使用不同介入措施後對學齡兒童暴露與健康風險之影響。本研究在開窗及關窗的條件下分別使用靜電紗窗、空氣清淨機、新風系統及冷氣靜電濾網4種介入措施,探討各介入措施對VOCs、PM2.5、PM0.1移除之有效性,採樣儀器包括不銹鋼採樣筒(Silonite Canister)、桌上型氣膠監測儀(DustTrak)以及掃描式電移動度微粒分徑器(SMPS)。此外,本研究將以完全混合模式為基礎,建立暴露推估模式用以評估教室於不同介入措施使用下之學童暴露濃度,並利用該暴露濃度評估學齡兒童之健康風險。結果顯示於開窗及關窗條件下不同介入措施之使用皆無法改善室內VOCs濃度,而開窗條件下使用不同介入措施以及關窗條件下無使用任何介入措施對於室內之PM2.5濃度亦無改善之情形。而關窗條件下使用不同介入措施可以使室內PM2.5之質量濃度下降50%以上,PM0.1之數量濃度下降40%以上,此外皆以空氣清淨機之效果最好,新風系統次之,冷氣靜電濾網最差。本研究利用直讀式儀器所量測到室內濃度進行暴露推估模式驗證,結果顯示在不同介入措施之使用對於PM2.5及PM0.1之室內濃度變化之推估情形,皆有良好之相關性,而模式推估時假設室內無產生源,導致推估濃度與實際值有些許差異,因此本研究利用校正方程式進行校正以推估室內之污染物濃度,並推估學童之健康風險,健康風險評估之顯示,在使用不同介入措施後,暴露於PM2.5之吸入性非致癌風險下降了78.5 ~ 89.6 %,吸入性增量致癌風險下降了83.3 ~ 91.9 %,而暴露於PM0.1之吸入性增量致癌風險則是下降46.9 ~ 78.4 %。本研究結果顯示不同介入措施之使用皆無法改善室內VOCs濃度。不同介入措施於開窗條件下使用皆無法有效降低室內之PM2.5及PM0.1,而關窗條件下,不同介入措施之使用能有效改善室內PM2.5及PM0.1,I/O ratio 分別下降50%及40%,並以空氣清淨機之效果最好,新風系統次之,冷氣靜電濾網最差,而對於學齡兒童之長期暴露劑量與長期健康風險評估結果顯示,在使用介入措施前暴露於PM2.5及PM0.1之風險在可接受範圍,而使用介入措施後也能有更低之風險。

    The present study assesses the effectiveness of different interventions for improving classroom air quality and establishes an exposure model to predict the indoor air pollutants concentration with the interventions. Furthermore, using the exposure model to estimate the long-term exposure dose of school children and assess the improvement of the long-term health risks of school children with the use of different interventions. The air quality interventions including haze window screens, air purifiers, air conditioners with air cleaning filters, and fresh air systems were tested under opened and closed window conditions with their general using characteristics. Canisters, DustTrak, and SMPS were used to assess the VOC, PM2.5, and PM0.1 concentrations, respectively. The results of this study showed that the use of different interventions could not reduce indoor VOC concentration. Different interventions cannot effectively reduce indoor PM2.5 and PM0.1 under the opened window condition. Under the closed window condition, the effectiveness of the air purifier was the best, followed by the fresh air system, and the air conditioner with air cleaning filter was the worst. The exposure concentration and health risks could be reduced for school-aged children with the use of different interventions.

    摘要 II Extend Abstract IV 誌謝 VII 目錄 VIII 表目錄 XI 圖目錄 XII 第 一 章 前言 1 1-1 研究背景 1 1-2 研究問題 2 1-3 研究目的 2 第 二 章 文獻回顧 3 2-1 空氣污染物 3 2-1-1 空氣污染物對健康的影響 3 2-1-2 空氣污染物對學齡兒童的影響 3 2-2 暴露評估 4 2-3 空氣污染防制介入措施 4 2-3-1 空氣清淨機 4 2-3-2 靜電紗窗 5 2-3-3 新風系統 5 2-3-4 冷氣靜電濾網 5 2-4 暴露推估模式的技術 5 2-4-1 指標物數據推估 6 2-4-2 利用數值模式推估 6 2-4-2.1 建築通風量 8 2-4-2.2 非通風設備的移除率 10 第 三 章 研究方法與設備 11 3-1 研究架構 11 3-2 採樣及分析 13 3-2-1 採樣的場域 13 3-2-2 使用之介入措施 13 3-2-3 採樣儀器 14 3-2-4 採樣方法 15 3-2-5 不同配置之採樣 16 3-2-6 數據分析方法 17 3-3 暴露模式的推估 19 3-3-1 暴露推估模式的通風量 21 3-3-2 暴露推估模式的通風量之驗證 23 3-3-3 沉積率 25 3-3-4 穿透係數 25 3-4 學齡兒童的暴露及健康風險評估 27 3-4-1 學齡兒童之暴露劑量 27 3-4-2 學齡兒童之風險特徵描述 28 3-4-3 蒙地卡羅之不確定分析 30 第 四 章 結果與討論 31 4-1 不同介入措施對TVOCs之有效性 31 4-1-1 室外TVOCs組成成分及濃度 31 4-1-2 使用不同介入措施對TVOCs之有效性評估 32 4-1-3 使用不同介入措施對不同VOC之有效性評估 33 4-2 不同介入措施對於PM2.5之改善效果 35 4-2-1 採樣期間之室外PM2.5質量濃度 35 4-2-2 不同介入措施用於PM2.5之有效性評估 36 4-2-2-1 開窗條件下PM2.5之結果 36 4-2-2-2 關窗條件下PM2.5之結果 37 4-2-3 介入措施放置教室不同位置之PM2.5質量濃度空間分布 42 4-3 不同介入措施對於PM0.1之有效性 45 4-3-1 採樣期間之室外粒徑分布 45 4-3-2 不同介入措施用於PM0.1之有效性評估 46 4-3-3 介入措施放置教室不同位置之PM0.1數量濃度空間分布 50 4-4 室內濃度推估模式 53 4-4-1 通風量 53 4-4-1-1 採樣期間之風速風向 53 4-4-1-2 通風量驗證 54 4-4-2 模式驗證 55 4-4-2-1 PM2.5質量濃度模式驗證 55 4-4-2-2 PM0.1數量濃度模式驗證 59 4-5 對學童健康風險之影響 62 4-5-1 學童暴露PM2.5之健康風險評估 64 4-5-2 學童暴露PM0.1之健康風險評估 67 第 五 章 結論與限制 70 第 六 章 參考文獻 72 第 七 章 附錄 76

    Alford KL, Kumar N. 2021. Pulmonary health effects of indoor volatile organic compounds—a meta-analysis. International journal of environmental research and public health 18:1578.
    Amato F, Rivas I, Viana M, Moreno T, Bouso L, Reche C, et al. 2014. Sources of indoor and outdoor pm2. 5 concentrations in primary schools. Science of the Total Environment 490:757-765.
    ASHRAE. 2007. 62.1. 2007, ventilation for acceptable indoor air quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc, Atlanta, GA.
    Barkjohn KK, Norris C, Cui X, Fang L, He L, Schauer JJ, et al. 2020. Children’s microenvironmental exposure to pm 2.5 and ozone and the impact of indoor air filtration. Journal of Exposure Science & Environmental Epidemiology 30:971-980.
    Barraza-Villarreal A, Sunyer J, Hernandez-Cadena L, Escamilla-Nuñez MC, Sienra-Monge JJ, Ramírez-Aguilar M, et al. 2008. Air pollution, airway inflammation, and lung function in a cohort study of mexico city schoolchildren. Environmental health perspectives 116:832-838.
    Bazyar J, Pourvakhshoori N, Khankeh H, Farrokhi M, Delshad V, Rajabi E. 2019. A comprehensive evaluation of the association between ambient air pollution and adverse health outcomes of major organ systems: A systematic review with a worldwide approach. Environmental Science and Pollution Research 26:12648-12661.
    Bennett DH, Koutrakis P. 2006. Determining the infiltration of outdoor particles in the indoor environment using a dynamic model. Journal of Aerosol Science 37:766-785.
    Billionnet C, Gay E, Kirchner S, Leynaert B, Annesi-Maesano I. 2011. Quantitative assessments of indoor air pollution and respiratory health in a population-based sample of french dwellings. Environmental research 111:425-434.
    Branco PT, Alvim-Ferraz M, Martins FG, Sousa S. 2014. The microenvironmental modelling approach to assess children's exposure to air pollution–a review. Environmental research 135:317-332.
    Charlesworth PS, Charlesworth PS. 1988. Air exchange rate and airtightness measurement techniques: An applications guide:Oscar Faber.
    Chen C-H, Chan C-C, Chen B-Y, Cheng T-J, Guo YL. 2015. Effects of particulate air pollution and ozone on lung function in non-asthmatic children. Environmental research 137:40-48.
    Chen C, Zhao B. 2011. Review of relationship between indoor and outdoor particles: I/o ratio, infiltration factor and penetration factor. Atmospheric environment 45:275-288.
    Chen R, Zhao A, Chen H, Zhao Z, Cai J, Wang C, et al. 2015. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: A randomized, double-blind crossover trial of air purifiers. Journal of the American College of Cardiology 65:2279-2287.
    Chuang H-C, Ho K-F, Lin L-Y, Chang T-Y, Hong G-B, Ma C-M, et al. 2017. Long-term indoor air conditioner filtration and cardiovascular health: A randomized crossover intervention study. Environment international 106:91-96.
    Fromme H, Diemer J, Dietrich S, Cyrys J, Heinrich J, Lang W, et al. 2008. Chemical and morphological properties of particulate matter (pm10, pm2. 5) in school classrooms and outdoor air. Atmospheric Environment 42:6597-6605.
    Hung-Lung C, Ching-Shyung H, Shih-Yu C, Ming-Ching W, Sen-Yi M, Yao-Sheng H. 2007. Emission factors and characteristics of criteria pollutants and volatile organic compounds (vocs) in a freeway tunnel study. Science of the Total Environment 381:200-211.
    Jhun I, Gaffin JM, Coull BA, Huffaker MF, Petty CR, Sheehan WJ, et al. 2017. School environmental intervention to reduce particulate pollutant exposures for children with asthma. The Journal of Allergy and Clinical Immunology: In Practice 5:154-159. e153.
    Klepeis NE, Nelson WC, Ott WR, Robinson JP, Tsang AM, Switzer P, et al. 2001. The national human activity pattern survey (nhaps): A resource for assessing exposure to environmental pollutants. Journal of Exposure Science & Environmental Epidemiology 11:231-252.
    Lai HK, Kendall M, Ferrier H, Lindup I, Alm S, Hänninen O, et al. 2004. Personal exposures and microenvironment concentrations of pm2. 5, voc, no2 and co in oxford, uk. Atmospheric Environment 38:6399-6410.
    Liao J, Ye W, Pillarisetti A, Clasen TF. 2019. Modeling the impact of an indoor air filter on air pollution exposure reduction and associated mortality in urban delhi household. International journal of environmental research and public health 16:1391.
    Liddament MW. 1986. Air infiltration calculation techniques: An applications guide:Air infiltration and ventilation centre Berkshire, UK.
    Lin C-C, Peng C-K. 2010. Characterization of indoor pm10, pm2. 5, and ultrafine particles in elementary school classrooms: A review. Environmental Engineering Science 27:915-922.
    Liu F, Li M, Li F, Weng K, Qi K, Liu C, et al. 2020. Preparation and properties of pvdf/fe3o4 nanofibers with magnetic and electret effects and their application in air filtration. Macromolecular Materials and Engineering 305:1900856.
    Liu L, Poon R, Chen L, Frescura A-M, Montuschi P, Ciabattoni G, et al. 2009. Acute effects of air pollution on pulmonary function, airway inflammation, and oxidative stress in asthmatic children. Environmental health perspectives 117:668-674.
    Maestas MM, Brook RD, Ziemba RA, Li F, Crane RC, Klaver ZM, et al. 2019. Reduction of personal pm 2.5 exposure via indoor air filtration systems in detroit: An intervention study. Journal of exposure science & environmental epidemiology 29:484-490.
    Mleczkowska A, Strojecki M, Bratasz Ł, Kozłowski R. 2016. Particle penetration and deposition inside historical churches. Building and Environment 95:291-298.
    Orme M, Leksmono N. 2002. Gu05-ventilation modelling data guide.Air Infiltration and Ventilation Centre, Brussels, Belgium.
    Padró-Martínez LT, Owusu E, Reisner E, Zamore W, Simon MC, Mwamburi M, et al. 2015. A randomized cross-over air filtration intervention trial for reducing cardiovascular health risks in residents of public housing near a highway. International journal of environmental research and public health 12:7814-7838.
    Requia WJ, Higgins CD, Adams MD, Mohamed M, Koutrakis P. 2018. The health impacts of weekday traffic: A health risk assessment of PM2. 5 emissions during congested periods. Environment international 111: 164-176.
    Rivas I, Viana M, Moreno T, Pandolfi M, Amato F, Reche C, et al. 2014. Child exposure to indoor and outdoor air pollutants in schools in barcelona, spain. Environment international 69:200-212.
    Rovelli S, Cattaneo A, Nuzzi CP, Spinazzè A, Piazza S, Carrer P, et al. 2014. Airborne particulate matter in school classrooms of northern italy. International journal of environmental research and public health 11:1398-1421.
    Seifert J, Li Y, Axley J, Rösler M. 2006. Calculation of wind-driven cross ventilation in buildings with large openings. Journal of Wind Engineering and Industrial Aerodynamics 94:925-947.
    Shi Y, Li X. 2018. Purifier or fresh air unit? A study on indoor particulate matter purification strategies for buildings with split air-conditioners. Building and Environment 131:1-11.
    Stabile L, Massimo A, Rizza V, D'Apuzzo M, Evangelisti A, Scungio M, et al. 2019. A novel approach to evaluate the lung cancer risk of airborne particles emitted in a city. Science of The Total Environment 656:1032-1042.
    Sze-To GN, Wu CL, Chao CY, Wan MP, Chan TC. 2012. Exposure and cancer risk toward cooking-generated ultrafine and coarse particles in hong kong homes. HVAC&R Research 18:204-216.
    Ten Berge WF. 2000. Mathematical models for estimating occupational exposure to chemicals:AIHA.
    Tsai J-H, Lu Y-T, Chung I, Chiang H-L. 2020. Traffic-related airborne voc profiles variation on road sites and residential area within a microscale in urban area in southern taiwan. Atmosphere 11:1015.
    Tsui H-C, Chen C-H, Wu Y-H, Chiang H-C, Chen B-Y, Guo YL. 2018. Lifetime exposure to particulate air pollutants is negatively associated with lung function in non-asthmatic children. Environmental Pollution 236:953-961.
    VanOsdell DW, Owen MK, Jaffe LB, Sparks LE. 1996. Voc removal at low contaminant concentrations using granular activated carbon. Journal of the Air & Waste Management Association 46:883-890.
    Waheed A, Li X, Tan M, Bao L, Liu J, Zhang Y, et al. 2011. Size distribution and sources of trace metals in ultrafine/fine/coarse airborne particles in the atmosphere of shanghai. Aerosol Science and Technology 45:163-171.
    Wang T, Wang H, Chen J, Wang J, Ren D, Hu W, et al. 2020. Association between air pollution and lung development in schoolchildren in china. J Epidemiol Community Health 74:792-798.
    Wang X, Zou Z, Dong B, Dong Y, Ma Y, Gao D, et al. 2019. Association of school residential pm2. 5 with childhood high blood pressure: Results from an observational study in 6 cities in china. International journal of environmental research and public health 16:2515.
    WHO. 2006. Air quality guidelines: Global update 2005: Particulate matter, ozone, nitrogen dioxide, and sulfur dioxide:World Health Organization.
    WHO. 2016. Ambient air pollution: A global assessment of exposure and burden of disease.
    WHO. 2020. World health statistics 2020: Monitoring health for the sdgs, sustainable development goals:World Health Organization.
    Wild CP, Stewart BW, Wild C. 2014. World cancer report 2014:World Health Organization Geneva, Switzerland.
    Yang XY, Bo W, Feng H, Chong W, Zhang SP, Jun W, et al. 2020. Acute effects of individual exposure to fine particulate matter on pulmonary function in schoolchildren. Biomedical and Environmental Sciences 33:647-659.
    Yu K-P, Lee Y-C, Chen Y-C, Gong J-Y, Tsai M-H. 2019. Evaluation of pm1, pm2. 5, and pm10 exposure and the resultant health risk of preschool children and their caregivers. Journal of Environmental Science and Health, Part A 54:961-971.
    王秋森, 陳時欣. 2002. 氣膠技術學:台北縣中和市: 新文京.
    鄧召易. 2020. 台灣不同鄉鎮大氣超細微粒之數量濃度粒徑分布特徵.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE