| 研究生: |
楊育婷 Yang, Yu-Ting |
|---|---|
| 論文名稱: |
鍺酸鑭基磷灰石離子導體之熱膨脹行為與晶體結構 Thermal Expansion of Apatite-type Lanthanum Germanate Based Solid Electrolytes |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 離子導體 、磷灰石結構 、鍺酸鑭 、熱膨脹行為 |
| 外文關鍵詞: | lanthanum germanate, thermal expansion behavior, high temperature x-ray diffraction |
| 相關次數: | 點閱:66 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為改善高溫型固態氧化物燃料電池電解質成本高、操作溫度高等缺點,開發研究中低溫型固態氧化物燃料電池電解質成為目前重要的課題。本研究以固態反應法合成製備鍺酸鑭基 (La9.5Ge6O26.25, La9.5Ge5.9Ni0.1O26.05, La9.5Ge5.8Ni0.2O26.05, La9.5Ge5.9W0.1O26.45, La9.5Ge5.8W0.2O26.45) 電解質,觀察未摻雜、微量摻雜鎢與微量摻雜鎳的晶體結構與熱膨脹行為之間的關聯。實驗結果顯示:雖然五個成分點合成出單一相的煅燒條件並非完全相同,但隨後以 1450°C/3 h 進行燒結,燒結體相對密度皆可達到 95% 以上,無二次相生成,且所有成分點微結構皆相似。從熱膨脹儀以及高溫 XRD 的結果皆可知樣品在 100℃ 到 900℃ 之間沒有相轉換發生,且有摻雜之成分點其熱膨脹係數較未摻雜大,隨著摻雜量增加熱膨脹係數會有些微增大的趨勢。高溫 X 光繞射結果以 Rietveld refinement method 精算出不同溫度環境之下的晶格常數,加以計算後可得高溫時晶體熱膨脹。各成分點之陶瓷體熱膨脹係數與晶體熱膨脹係數接相近,因此推測微結構對本實驗結果影響不大。且熱膨脹行為與導電率並無直接關聯。
This study mainly concerns that the thermal stability, crystal structure, and phase transition of lanthanum germanate within 1b00℃ to 900℃. Lanthanum germanate were prepared in an attempt to synthesize a single phase by solid state reaction method. The XRD pattern of calcined powder showed that single phase could be obtained for all compositions calcined under appropriate temperature. Crystal structure analysis refined through the Rietveld method distinctly showed that the sample doping W6+ has a hexagonal structure and doping Ni2+ has a triclinic structure. The result shows that the bodies have high relative density after sintering at 1450℃ for 3 h. The thermal expansion coefficient of this ceramic obtained by the dilatation method is approximately 8 x 10-6 K-1 and the result shows there is no phase transition within 30℃ to 900℃. The thermal expansion coefficient appears to be compatible with those of the common adjacent materials in solid oxide fuel cell. Crystal structure is investigated by high temperature x-ray diffraction analysis and Rietveld refinement within 500℃ to 900℃.
1. 陳正威、黃啟原,鍺酸鑭基磷灰石離子導體之晶體結構與電性,國立成功大學資源工程學系,碩士論文,中華民國一零五年。
2. 林鈺烜、黃啟原,鎳摻雜之鍺酸鑭基磷灰石離子導體之晶體結構與電性,國立成功大學資源工程學系,碩士論文,中華民國一零四年。
3. 林立武、黃啟原,鎢摻雜之鍺酸鑭基磷灰石離子導體之晶體結構與電性,國立成功大學資源工程學系,碩士論文,中華民國一零三年。
4. U.S. Department of Energy, Fuel Cell Technologies Program, Comparison of Fuel Cell Technologies. http://www.hydrogenandfuelcells.energy.gov.
5. 台灣燃料電池夥伴聯盟,財團法人台灣經濟研究院版權所有。 FC介紹。2013年11月5日,取自台灣燃料電池資訊網。
6. 陽哲化,固態氧化物燃料電池 (SOFC) 原理與檢測,國立台北科技大學製造科技所,中華民國九十五年。
7. http://www.chinabaike.com/article/316/327/2007/2007022260477.html
8. J. C. Diniz da Costa, “Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation,” Journal of Membrane Science, 320(1), 13-41, 2008.
9. S. Nakayama, Y. Higuchi, Y. Kondo, and M. Sakamoto, “Effects of cation- or oxide ion-defect on conductivities of apatite-type La–Ge–O system ceramics,” Solid State Ionics, 170, pp. 219~223, 2004.
10. D. Elbio, H. Takashi and M. Adriana, “Colossal magnetoresistant materials: the key role of phase separation,” Physics Reports, 344(1), 1-153, 2001.
11. S. Nakayama, H. Aono and Y. Sadaoka, “Ionic conductivity of Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd and Dy),” Chemistry Letters, 24, pp. 431-432, 1995.
12. S. Nakayama, T. Kageyama, H. Aono and Y. Sadaoka, “Ionic conductivity of lanthanoid silicates Ln10(SiO4)6O3 (Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb),” Journal of Materials Chemistry, 5, pp. 1801-1805, 1995.
13. S. Nakayama and M. Sakamoto, “Electrical properties of new type high oxide ionic conductor RE10Si6O27 (RE = La, Pr, Nd, Sm, Gd, Dy),” Journal of the European Ceramic Society, 18, pp. 1413-1418, 1998.
14. P. R. Slater, J. E.H. Sansom, and J. R. Tolchard, “Development of apatite-type oxide ion conductors,” Chemistry Record, 4 (3), pp. 373-384, 2005.
15. L. Leon-Reina, J. Manuel Porras-Vazquez, Enrique R. Losilla, and Miquel A. G. Aranda, “Interstitial oxide positions in oxygen-excess oxyapatites,” Solid State Ionics, 177, pp. 1307~1315, 2006.
16. S. F. Wang, Y. F. Hsu, W. J. Lin, K. Kobayashi, “Transition metal-doped lanthanum germanate apatites as electrolyte materials of solid oxide fuel cells,” Solid State Ionics, 176, 1941-1947, 2013.
17. S. F. Wang, Y. F. Hsu, W. J. Lin, “Effects of Nb5+, Mo6+, and W6+ dopants on the germanate-based apatites as electrolyte for use in solid oxide fuel cells,” International Journal of Hydrogen Energy, 38, I2015-I2023, 2013.
18. 林婉茹、徐永富、王錫福,摻雜對磷灰石結構鍺酸鑭基電解質應用於固態氧化物燃料電池之特性影響研究,國立台北科技大學材料工程與科學研究所,碩士論文,中華民國一零一年。
19. H. Yanagida, K. Koumoto, and M. Miyayama, The Chemistry of Ceramics. 1996, pp. 185-190.
20. D. W. Richerson, Modern Ceramic Engineering (3rd ed.). 2006, pp. 198-207.
21. E. V. Tsipis, and V. V. Kharton, “Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review,” Journal of Solid State Electrochem, pp. 1367-1391, 2008.
22. J. Zhou, X. F. Ye, J. L. Li, S. R. Wang, and T. L. Wen, “Synthesis and characterization of apatite-type La9.67Si6-xAlxO26.5-x/2 electrolyte materials and compatible cathode materials,” Solid State Ionics, pp. 81-86, 2011.