| 研究生: |
黃振昇 Huang, Chen-Sheng |
|---|---|
| 論文名稱: |
以三軸圓錐貫入試驗推估浚填砂土之抗液化強度 The Tri-axial Cone Penetration Test to Predict Liquefaction Resistance of Reclaimed Soil |
| 指導教授: |
陳景文
Chen, Jing-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 圓錐阻抗 、反覆剪應力比(CSR) 、細粒料含量 、三軸圓錐貫入試驗 、反覆三軸試驗 、關連性 |
| 外文關鍵詞: | Correlation, Cyclic stress ratio, Cone resistance, Fine content, Cyclic Triaxial Test, Triaxial cone penetration test |
| 相關次數: | 點閱:99 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以自行研發之室內三軸圓錐貫入試驗(Triaxial Cone Penetration Test, TCPT),求取浚填砂土在特定有效圍壓下,不同細粒料含量之圓錐阻抗qc (Cone Resistance),同時以反覆三軸試驗(CTT)求取相對應土樣達初始液化時所需之反覆剪應力比,本文以反覆加載週期數Nc=15之反覆剪應力比(Cyclic Stress Ratio, CSR)定義為土壤之抗液化能力,以進行兩者之關連性比較。試驗結果顯示,三軸圓錐貫入阻抗qc與土壤之抗液化能力有良好之關連性,並發現土樣之qc與液化阻抗,隨著細粒料含量0%至10%增加至最大值,而當細粒料含量從10%增加至50%時,則均呈降低之現象。為瞭解細粒料之影響,本研究同時利用掃瞄電子顯微取像技術(SEM)和X光繞射(XRD)來解釋上述之現象。發現土樣中細粒料之含量與其特性在其液化阻抗上扮演了重要的角色。最後以三軸圓錐貫入試驗所獲得之(qc)peak,帶入所推得之關係式,預測土壤液化阻抗皆有良好的一致性。
This paper presents a quick and cost-effective method to evaluate the liquefaction resistance of reclaimed soils. A particular device modified from conventional triaxial compression test apparatus, namely “Triaxial Cone Penetration Test (TCPT)”, was developed to obtain the cone resistance under certain confining pressure so as to correlate the liquefaction resistance of the corresponding soil. The liquefaction resistance is defined as the Cyclic Stress Ratio (CSR) of the reclaimed soils under cyclic loading number (Nc)=15. A well correlation was found eventually. Besides, both (qc)peak and liquefaction resistance increased to the maximum values with fine content of soils increasing from 0 % to 10 % and then decreased with fine content increasing to 50 %. The techniques of Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD) were adopted to explain the above phenomenon. It is found that the fine content and its characteristics play an important role on the liquefaction resistance of the reclaimed soils. Finally, it indicated that the prediction of the liquefaction resistance of soil by using the peak cone resistance is consistent with that from the experiments.
1. Been, K., Jefferies, M.G., and Hachy, J. “A Critical State of Sand,” Geotechnique, Vol.41, No.3, pp.365-381, 1991.
2. Boulanger, R.W., Chan, C.K., Seed, H.B., Seed, R.B., and Sousa, J., “A low-compliance bidirectional cyclic shear apparatus,” Geotechnical Testing Journal, ASTM, Vol.16, No.1, pp.36-45, 1993.
3. Castro, G., “Liquefaction and Cyclic Mobility of Saturated Sands,” JGED, ASCE, Vol.101, No.GT6, pp.551-569, 1975.
4. Chaney, R.C., “Saturation effects on the cyclic strength of sands,” Earthquake Engineering and Soil Dynamics, ASCE, Vol.1, pp.342-358, 1978.
5. Chung, Kin Y.C., and Wong, I.H., “Liquefaction potential of soils with plastic fines,” Soil Dynamics and Engineering Conference, Southampton, pp.887-897, 1982.
6. EI Hosri, M.S., Biarez, H., Hicher, P.Y., “Liquefaction characteristics of silty clay,” Proc., 8th World Conf. on Earthquake Engrg., Prentice-Hall, Englewood Cliffs, N.J., Vol.3, pp.277-284, 1984.
7. Finn, W.D.L., Pickering, D.J., and Bransby, P.L., “Sand Liquefaction in Triaxial and Simple Shear Test,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.97, No.SM4, pp.639-659, 1971.
8. Holtz, R.D., and Kovacs, W.D., “An Introduction to Geotechnical Engineering,” Prentice Hall, Englewood Cliffs, New Jersey, pp.733,1981.
9. Huang, A.B., and Ma, M.Y., “An Analytical Study of Cone Penetration Tests in Granular Material,” Canadian Geotechnical Journal, to show in February, 1994.
10. Ishibashi, I.M., Sherlif, M.A., and Cheng, W.L., “The Effects of Soil Parameters on Pore Pressure Rise and Liquefaction Prediction,” Soils and Foundations, JSSMEF, Vol.22, No.1, pp.37-48, 1982.
11. Ishihara, K., and Okada, Shigeru, “Effects of Stress History on Cyclic Behavior of Sand,” Soils and Foundations, Vol.18, No.4, pp.29-45, 1978.
12. Ishihara, K., Sodekawa, M., and Tanaka, Y., “Effect of Overconsolidation on Liquefaction Characteristics of Sand Containing Fine,” Dynamic Geotechnical Test, ASCE, STP654, American Society for Testing and Materials, pp.246-264, 1978.
13. Ishihara, K., “Stability of Natural Deposits During Earthquakes,” Proceeding of the 11th International Conference of ISFESM, Rotterdam, Netherlands,Vol.1, pp.321-376,1985.
14. Ishihara, K., and Koseki, J., “Cyclic shear strength of fines-containing sands,” Earthquake and Geotech. Engrg., Japanese Society of Soil Mechanics and Foundation Engineering, Tokyo, pp.101-106, 1989.
15. Ishihara, K. and Yoshimine, M., “Evaluation of Settlements in Sand Deposits Following Liquefaction during Earthquakes,” Soils and Foundation, Vol.32, No.1 pp.173-188, Mar., 1992.
16. Ishihara, K., “Liquefaction and Flow Failure During Earthquakes,” Geotechnique, Vol.43, No.3, pp.351-415, 1993.
17. Kishida, H., “Characteristics of Liquefied Sands during Mino-owari, Tohnankai and Kikui Earthquake,” Soils and Foundations, JSMFE, Vol.9, No.1, 1969.
18. Ladd, R.S., “Preparing Test Specimens Using Undercompaction,” Geotechnical Testing Journal, Vol.1, No.1, March, pp.16-23, 1978.
19. Lee and Fitton, “Factor Affecting the Cyclic Loading Strength of Soil”, Vibration Effects of Earthquake on Soils and Foundations, ASTM, STP450, pp.71-96, 1969.
20. Marcuson, W.F., III, Ballard, R.F., JR., and Ledbetter, R.H., “Liquefaction failure of tailings dams resulting from the Near Izu Oshima earthquake, 14 and 15 January, 1978,” Proceedings, 6th Pan American Conference on Soil Mechanics and Foundation Engineering, Lima, Peru, 1979.
21. Mulilis, J.P., “The Effect of Method of Sample Preparation on the Cyclic Stress-Strain Behavior of sands,” Report No.EECR75-18, U.C., Berkeley Earthquake Engineering Research Center, 1975.
22. Mulilis, J.P., Seed, H.B., Chan, C.K., “Resistance to Liquefaction due to Sustained Pressure,” Journal of the geotechnical engineering division, Vol.103, No.GT7, July, pp.793-797, 1977.
23. Mulilis, J.P. et al., “Triaxial Testing Techniques and Sand Liquefaction,” Dynamic Geotechnical Testing, ASTM, STP654, American Society for Testing and Materials, pp.265-279, 1978.
24. NCEER, “Proceeding of NCEER Woekshop on Evaluation of Liquefaction Resistance of Soils,” USA., 1997.
25. O-Hara, S., Yasunaga, F., and Fujii, N., “Experimental Study on Liquefaction of Saturated Sand Contained a Little Ciay,” Technology Reports of the Yamaguchi University, Tokiwadai, UBE, Japan, Vol.1, No.3, pp.401-408, Dec, 1974.
26. Peacock, W.H., and Seed, H.B., “Sand Liquefaction Under Cyclic Loading Simple Shear Conditions,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.94, No.SM3, pp.689-708, 1968.
27. Pitman, T.D., Robertson, P.K., and Sego, D.C., “Infuence of Fines on the Collapse of Loose Sands,” Canadian Geotechnical Journal, Vol.31, No.5, pp.728-739, 1994.
28. Robertson, P.K. Richard, G., and Campanella, M., “Liquefaction Potential of Sands using the CPT,” Journal of Geotechnical Engineering, ASCE, Vol.111, No.3, pp.384-403, 1985.
29. Seed, H.B., and Alba, P., “Use of SPT and CPT tests for evaluating the liquefaction resistance of soils,” Proceedings, Insitu 86, ASCE, 1986.
30. Seed, H.B., and Lee, K.L., “Liquefaction of Saturated Sands during Cyclic Loading,” JSMFD, ASCE, Vol.92, No.SM6, pp.105-134, 1966.
31. Seed, H.B., and Idriss, I.M., “Simplified Procedure for Evaluating Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.97, No.SM9, pp.1249-1273, 1971.
32. Seed, H.B., Idriss, I.M., Makdisi, F.I., and Banerjee, N., “Representation of Ir-regular Stress Time Histories by Equivalent Uniform Stress Series in Liquefaction Analysis,” EERC75-29, Earthquake Engineering Research Center, University of California, Berkeley, pp.21, 1975.
33. Seed, H.B., “Evaluation of Soil Liquefaction Effects on Level Ground During Earthquakes,” Liquefaction Problems in Geotechnical Engineering Session on Soil Dynamics Committee of Geotechnical Engineering Division, ASCE, pp.1-104, 1976.
34. Seed, H. B., Tokimatsu, L.F., Harder, L.F., and Riely, M.C., “Influence of SPT Procedures in Soil Liquefaction Resistance Evaluations,” Earthquake Research Center, University of California Berkeley, Vol.111, No.2, pp.1425-1445, 1985.
35. Seismic Design Code of Building (SDCB), Ministry of the Interior (MOI), Taiwan, 2005.
36. Shen, C. K., Vrymoed J. L. and Uyeno C. K., “The Effects of Fines on Liquefaction of Sands,” Proceedings of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol.2, pp.381-385, 1977.
37. Sherif, M.A., Ishibashi, I., and Tsuchiga, C., “Saturated Effects on Initial Soil Liquefaction,” JGED, ASCE, Vol.103, No.GT8, pp.914-917, 1977.
38. Suzuki and Toki, “Effect of Preshearing on Liquefaction Characteristics of Saturated Sand Subjected to Cyclic Loading,” Soils and Foundations, Vol.30, No.2, pp.33-42, 1990.
39. Thevanayagam, S., “Effect of Fines and Confining Stress on Undrained Shear Strength of Silty Sands,” Journal of Geotechnical and Geoevironmental Engineering, Vol.124, No.6, pp.479-491, 1998.
40. Thevanyagam, S., Fiorilb, M., and Liang, J., “Effect of Non-Plastic Fines Undrained Cyclic Strength of Silty Sands,” Soil Dynamic and Liquefaction 2000, pp.77-91, 2000.
41. Tianqiang Guo, Shamsher Prakash, “Liquefaction of silts and silt-clay mixtures,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol.125, pp.706-710, 1999.
42. Tokimatsu, K. and Yoshimi, Y., “Empirical Correlation of Soil Liquefaction Based on SPT N-value and Fine Content,” Soils and Foundations, JSSMFE, Vol.23, No.4, pp.56-74, 1983.
43. Uyeno, C. K., “Liquefaction of Ottawa Sand with Fines, Master Thesis,” University of California, Davis, 1977.
44. Vaid, Y.P., Chern, J.C., and Tumi, H., “Confining Pressure, Grain Angularity and Liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol.111, No.10, pp.1229-1235, 1985.
45. Vaid, Y.P. et al., “Particle Gradation and Liquefaction,” Journal of Geotechnical Engineering, ASCE, Vol.116, No.4, April, pp.698-703, 1990.
46. Wong, R.T., Seed, H.B., and Chen, C.K., “Cyclic Loading Liquefaction of Gravelly Soils,” Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.101, No.GT6, pp.571-583, 1975.
47. Yoshimi, Y., Tokimatsu, K., and Ohara, J., “In Situ Liquefaction Resistance of Clean Sands Over a Wide Density Range,” Geotechnique, Vol.44, No.3, pp.479-494, 1984.
48. Yoshimi, Y., Tanaka, K., and Tokimatsu, K., “Liquefaction Resistance of Partially Saturated Sand,” Soils and Foundations, Vol.29, No.3, pp.157-162, 1988.
49. 日本道路協會,「道路橋示方書‧同解說,V耐震設計篇」,1996。
50. 王統立,「高細料含量粉土細砂中CPT之標定試驗」,國立交通大學土木工程研究所,碩士論文,2000。
51. 江鈞平,「壓密與顆粒性質對含微量黏土細砂之液化潛能的影響」,國立台灣大學土木工程研究所,碩士論文,1984。
52. 沈茂松,「實用土壤力學試驗」,文笙書局股份有限公司,高雄,2001。
53. 吳偉特,「台灣地區砂性土壤液化潛能之初步研究」,土木水利,第六卷,第二期,第39-70頁,1979。
54. 吳偉特與楊騰芳,「細粒料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期,第59-74頁,1987。
55. 李煜舲,「飽和砂土液化特性與孔隙水壓預估之研究」,國立交通大學土木工程研究所,碩士論文,1988。
56. 李維峰,「土壤液化防治之研究與發展趨勢」,地工技術,第103期,第89-91頁,3月,2005。
57. 林呈與孫洪福,「見證921集集大地震(下)-震災成因與因應對策」,麥格羅‧希爾出版公司,台灣省土木技師公會,2000。
58. 林敏清與簡連貴,「細料含量對回填土壤剪力波波速影響之探討」,中華民國第二十一屆全國力學會議,國立台灣海洋大學河海工程學系,12月20與21日,1997。
59. 林智偉,「無塑性細料對砂質土壤液化阻抗之研究」,國立成功大學土木工程研究所,碩士論文,2006。
60. 林義傑,「雲林麥寮抽砂回填土壤液化強度與變形特性之探討」,國立海洋大學河海工程研究所,碩士論文,1998。
61. 林鈺智,「不同級配對沉泥質砂動態與靜態強度之影響」,國立高雄應用科技大學土木工程與工程防災科技研究所,碩士論文,2005。
62. 柯子昭,「麥寮砂之液化阻抗與體積應變特性之研究」,國立成功大學土木工程研究所,碩士論文,2004。
63. 范恩碩,「以九二一集集地震案例探討細料對液化潛能評估之影響」,國立成功大學土木工程研究所,博士論文,2003。
64. 胡德欽,「擾動因素對現場飽和砂性土壤液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文,1982。
65. 夏啟明,「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文,1992。
66. 翁華鴻,「台南七股地區土壤動態特性之分析」,國立成功大學土木工程研究所,碩士論文,1997。
67. 高傳勝,「鬆砂含粉土細料動力強度行為之探討」,國立成功大學土木工程研究所,碩士論文,2000。
68. 陳守德,「微量細料對砂性土壤液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文,1986。
69. 陳志安,「不同程度影響因素對不同緊密度砂土液化特性之研究」,國立台灣大學土木工程研究所,碩士論文,1990。
70. 陳卓然,「過壓密與前期微震對台灣地區砂性土壤液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文,1983。
71. 陳景文、李德河及古志生,「CPT應用於地盤調查與液化潛能評估之研究—液化土壤之特性—」,國立成功大學土木工程研究所,2001。
72. 郭治平、張睦雄、許榕益及蕭士慧,「Iwasaki液化潛能指數PL本土化之探討」,第十屆現代的台灣大地工程研討會會議,2003。
73. 許家豪,「不同粒徑細粒料對土壤液化阻抗影響之研究」,國立成功大學土木工程研究所,碩士論文,2003。
74. 張益銘,「霧峰地區土壤液化特性研究」,國立中興大學土木工程研究所,碩士論文,2001。
75. 張清秀,「黏土含量對福隆砂液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文,1982。
76. 黃安斌、林志平、紀雲曜、古志生、蔡錦松、李德河及林炳森,「台灣中西部粉土細砂液化行為分析」,地工技術,第103期,第5-30頁,3月,2005。
77. 詹文源,「台南七股地區砂性土壤液化阻抗性質之評估」,國立成功大學土木工程研究所,碩士論文,1996。
78. 楊沂恩,「細料含量及塑性指數對砂土液化影響之研究」,國立成功大學土木工程研究所,碩士論文,1984。
79. 楊騰芳,「細粒料在過壓密及前期微震作用下對飽和砂性土壤液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文,1986。
80. 廖元憶,「台灣西南沿海高細粒料含量砂土的探討」,國立成功大學土木工程研究所,碩士論文,2005。
81. 廖展豐,「砂質土層受地震荷重之試驗沉陷分析與數值模擬」,國立成功大學土木工程研究所,碩士論文,2004。
82. 鄭文隆,「淺談地震作用下基礎土壤液化及液化潛能評估法」,現代營建,第二卷,第一期,第89-94頁,1981。
83. 鍾仁彰,「壓密應力比、相對密度與細料含量對砂土液化行為影響之研究」,國立成功大學土木工程研究所,碩士論文,2005。
84. 鍾瑞敏,「砂土中黏土含量對液化潛能之影響」,國立台灣大學土木工程研究所,碩士論文,1981。
85. 簡宏濱,「細料對七股地區土壤液化行為之研究」,國立成功大學土木工程研究所,碩士論文,1998。
86. 簡連貴,「近岸抽砂回填造地土壤細料流失與液化強度之探討」,港灣技術,第九期,1994。
87. 簡連貴、林義傑及林敏清,「回填土壤液化強度評估模式之建立」,第二十屆海洋工程研討會論文集,國立海洋大學,11月,1998。
88. 簡連貴、陳俶季、張志新及林敏清,「波浪對海床土層應力與液化行為之影響」,財團法人中興工程顧問社,專案研究報告SEC/R-HY-00-07,3月,2000。
89. 蘇永富,「飽和砂土液化潛能與剪力之初步研究」,國立交通大學土木工程研究所,碩士論文,1991。