| 研究生: |
涂維元 Tu, Wei-Yuan |
|---|---|
| 論文名稱: |
介觀量子輸運及量子干涉元件中的電子同調動力學 Dynamics of Electron Coherence in Mesoscopic Quantum Transport and Interference Devices |
| 指導教授: |
張為民
Zhang, Wei-Min |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 142 |
| 中文關鍵詞: | AB干涉儀 、量子同調性 、電子動力學 |
| 外文關鍵詞: | AB interferometer, quantum coherence, electron dynamics |
| 相關次數: | 點閱:93 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在此論文中我們探討在量子輸運及量子干涉系統中的電子同調性。我們特別關注雙量子點Aharonov-Bohm干涉儀在這方面的物理特性。這個簡單的系統提供了一個整合的平台,讓我們可以在一個統一的框架下探索在許多量子輸運系統中都普遍出現的各式議題,包括量子同調性,量子耗散和干涉。藉由對於該系統的精確主方程求解,我們研究了雙量子電所有電子組態的動態變化;我們也調查了該干涉儀的暫態輸運行為。除此之外,我們也更進一步將自旋以及自旋軌道角動量耦合考慮進同樣的體系,並且研究了該系統自旋相關的動態輸運特性。綜合上述研究結果,我們將對量子輸運與干涉元件中的電子同調性提出我們的觀點。
In this thesis, we investigate electron coherence in quantum transport and interference devices. In particular, we specifically focus on the physical properties of a double-quantum-dot Aharonov-Bohm interferometer. This simple system is an ideal platform for exploring the issues of quantum coherence, dissipation and interference that prevail in many quantum transport systems in a unified framework. By solving an exact master equation, we study explicitly the dynamics of the full electronic configurations of the double-quantum-dot system. We also investigate the transient transport dynamics of such interferometer. We further make an extension to include spin-orbit interaction in the same setup and examine the time-dependent spin-resolved transport dynamics. By comprehending the properties of various physical quantities, we provide a perspective on electron coherence in quantum transport and interference devices.
[1] C. W. J. Beenakker and H. van Houten, Solid State Phys. 44, 1 (1991).
[2] S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University
Press, New York, 1995).
[3] Y. Imry, Introduction to Mesoscopic Physics (Oxford University Press, Ox-
ford, 1997).
[4] R. Landauer, IBM J. Res. Dev. 1, 223 (1957).
[5] R. Landauer, Philos. Mag. 21, 863 (1970).
[6] M. B¨uttiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. Rev. B 31, 6207
(1985).
[7] M. B¨uttiker, Phys. Rev. Lett. 57, 1761 (1986).
[8] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P.
Kouwenhoven, D. van der Marel, and C. T. Foxon, Phys. Rev. Lett. 60, 848
(1988).
[9] D. A. Wharam, T. J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J. E. F
Frost, D. G. Hasko, D. C. Peacock, D. A. Ritchie, and G. A. C. Jones, J. Phys.
C 21, L209 (1988).
[10] S. Datta, Phys. Rev. B 45, 1347 (1992).
[11] L. Zehnder, Z. Instrumentenkunde 11, 275 (1891).
[12] L. Mach, Z. Instrumentenkunde 12, 89 (1892).
[13] R. Hanbury Brown and R.Q. Twiss, Nature (London) 178, 1046 (1956).
[14] M.O. Scully and M.S. Zubairy, Quantum Optics (Cambridge University
Press, Cambridge, 1997).
[15] W. Ehrenberg and R. E. Siday, Proc. Phys. Soc. London Sect. B 62, 8 (1949).
[16] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959). This effect was
already predicted in [15]. So it is sometimes called Ehrenberg-Siday-Aharonov-
Bohm effect.
[17] R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Phys. Rev.
Lett. 54, 2696 (1985).
[18] A. Yacoby, M. Heiblum, V. Umansky, H. Shtrikman, and D. Mahalu, Phys.
Rev. Lett. 73, 3149 (1994).
[19] A. Yacoby, M. Heiblum, D. Mahalu, and H. Shtrikman, Phys. Rev. Lett. 74,
4047 (1995).
[20] R. Schuster, E. Buks, M. Heiblum, D. Mahalu, V. Umansky and H. Shtrik-
man, Nature (London) 385, 417 (1997).
[21] Y. Ji, M. Heiblum, D. Sprinzak, D. Mahalu and H. Shtrikman, Science 290,
779 (2000).
[22] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
[23] E. Bocquillon, V. Freulon, F. D. Parmentier, J.-M. Berroir, B. Pla¸cais, C.
Wahl, J. Rech, T. Jonckheere, T. Martin, C. Grenier, D. Ferraro, P. Degiovanni,
and G. F`eve, Ann. Phys. (Berlin) 526, 1 (2014).
[24] Y. Ji, Y. Chung, D. Sprinzak, M. Heiblum, D. Mahalu, and H. Shtrikman,
Nature 422, 415 (2003).
[25] P. Roulleau, F. Portier, P. Roche, A. Cavanna, G. Faini, U. Gennser, and D.
Mailly, Phys. Rev. Lett. 100, 126802 (2008).
[26] E. Bieri, M. Weiss, O. Goktas, M. Hauser, C. Schonenberger, and S. Ober-
holzer, Phys. Rev. B 79, 245324 (2009).
[27] L. Litvin, H. P. Tranitz, W. Wegscheider, and C. Strunk, Phys. Rev. B 75,
033315 (2007).
[28] W. Oliver, J. Kim, R. Liu, and Y. Yamamoto, Science 284, 299 (1999).
[29] M. Henny, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin, M. Holland, C.
Sch¨onenberger, Science 284, 296 (1999).
[30] M. Henny, S. Oberholzer, C. Strunk, and C. Sch¨onenberger, Phys. Rev. B 59, 2871 (1999).
[31] P. Samuelsson, E.V. Sukhorukov, and M. B¨uttiker, Phys. Rev. Lett. 92,
026805 (2004).
[32] I. Neder, N. Ofek, Y. Chung, M. Heiblum, D. Mahalu, and V. Umansky,
Nature (London) 448, 333 (2007).
[33] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum In-
formation (Cambridge Univ. Press, Cambridge, 2000).
[34] G. F`eve, A. Mah´e, J.-M. Berroir, T. Kontos1, B. Pla¸cais, D. C. Glattli, A.
Cavanna, B. Etienne, Y. Jin, Science 316, 1169 (2007).
[35] M. Moskalets and M. B¨uttiker, Phys. Rev. B 83, 035316 (2011).
[36] J. D. Fletcher, P. See, H. Howe, M. Pepper, S. P. Giblin, J. P. Griffiths, G.
A. C. Jones, I. Farrer, D. A. Ritchie, T. J. B. M. Janssen, and M. Kataoka,
Phys. Rev. Lett. 111, 216807 (2013).
[37] M. A. Kastner, Phys. Today 46, 24 (1993).
[38] R. C. Ashoori, Nature(London) 379, 413 (1996).
[39] L. P. Kouwenhoven, T. H. Oosterkamp, M. W. S. Danoesastro, M. Eto, D.
G. Austing, T. Honda, and S. Tarucha, Science 278, 1788 (1997).
[40] L. P. Kouwenhoven, D. G. Austing, and S. Tarucha, Rep. Prog. Phys. 64,
701 (2001).
[41] S. M. Reimann and M. Manninen, Rev. Mod. Phys. 74, 1283 (2002).
[42] R. H. Blick, R. J. Haug, J. Weis, D. Pfannkuche, K. v. Klitzing, and K.
Eberl, Phys. Rev. B 53, 7899 (1996).
[43] A.W. Holleitner, R.H. Blick, A.K. Huttel, K. Eberl, and J.P. Kotthaus,
Science 297, 70 (2002).
[44] R. H. Blick and H. Lorenz, in Proceedings of the IEEE International Sympo-
sium on Circuits and Systems, edited by J. Calder, Vol. II (IEEE, Piscataway,
NJ, 2000), p. 245.
[45] T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, and Y. Hirayama,
Phys. Rev. Lett. 91, 226804 (2003).
[46] J. Gorman, D. G. Hasko, and D. A. Williams, Phys. Rev. Lett. 95, 090502
(2005).
[47] K. D. Petersson, J. R. Petta, H. Lu, and A. C. Gossard, Phys. Rev. Lett.
105, 246804 (2010).
[48] D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 (1998).
[49] G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B 59, 2070 (1999).
[50] X. Hu and S. Das Sarma, Phys. Rev. A 61, 062301 (2000).
[51] F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C. Nowack,
T. Meunier, L. P. Kouwenhoven, and L. M. K. Vandersypen, Nature (London)
442, 766 (2006).
[52] K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, and L. M. K. Vandersypen,
Science 318, 1430 (2007).
[53] D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature (London) 456,
218 (2008).
[54] J. R. Petta, A. C. Johnson, J. M. Taylor, E. Laird, A. Yacoby, M. D. Lukin,
and C. M. Marcus, Science 309, 2180 (2005).
[55] D. P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, and K. B. Whaley,
Nature (London) 408, 339 (2000).
[56] Z. Shi, C. B. Simmons, J. R. Prance, J. K. Gamble, T. S. Koh, Y.-P. Shim,
X. Hu, D. E. Savage, M. G. Lagally, M. A. Eriksson, M. Friesen, and S. N.
Coppersmith, Phys. Rev. Lett. 108, 140503 (2012).
[57] Z. Shi, C. B. Simmons, D. R. Ward, J. R. Prance, X. Wu, T. S. Koh, J. K.
Gamble, D. E. Savage, M. G. Lagally, M. Friesen, S. N. Coppersmith, and M.
A. Eriksson Nat. Comms. 5, 3020 (2014).
[58] A. Rycerz, J. Tworzyd lo, and C. W. J. Beenakker, Nat. Phys. 3, 172 (2007).
[59] D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809 (2007).
[60] A. P´alyi and G. Burkard, Phys. Rev. Lett. 106, 086801 (2011).
[61] E. A. Laird, F. Pei, and L. P. Kouwenhoven, Nat. Nanotech. 8, 565 (2013).
[62] A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao,
J. Yan, D. G. Mandrus, D. Xiao, W. Yao, and X. Xu, Nat. Nanotech. 8, 634
(2013).
[63] L. Chirolli and G. Burkard, Adv. Phys. 57, 225 (2008).
[64] L. Fedichkin, M. Yanchenko, and K. A. Valiev, Nanotechnology 11, 387
(2000); L. Fedichkin and A. Fedorov, Phys. Rev. A 69, 032311 (2004).
[65] Z. J. Wu, K.D. Zhu, X. Z. Yuan, Y.W. Jiang, and H. Zheng, Phys. Rev. B
71, 205323 (2005).
[66] D. C. B. Valente, E. R. Mucciolo, and F. K. Wilhelm, Phys. Rev. B 82,
125302 (2010).
[67] Y. M. Galperin, B. L. Altshuler, J. Bergli, and D. V. Shantsev, Phys. Rev.
Lett. 96, 097009 (2006).
[68] I. V. Yurkevich, J. Baldwin, I. V. Lerner, and B. L. Altshuler, Phys. Rev. B
81, 121305 (2010).
[69] N. Byers and C. N. Yang, Phys. Rev. Lett. 7, 46 (1961).
[70] R. G. Chambers, Phy. Rev. Lett. 5, 3 (1960).
[71] A. Tonomura, N. Osakabe, T. Matsuda, T. Kawasaki, J. Endo, S. Yano, and
H. Yamada, Phys. Rev. Lett. 56, 792 (1986).
[72] L. W. Schubnikov and W. J. de Haas, Proc. K. Ned. Akad. Wet. 33, 130
(1930).
[73] L. W. Schubnikov and W. J. de Haas, Proc. K. Ned. Akad. Wet. 33, 163
(1930).
[74] B. L. Al’tshuler, A. G. Aronov and B. Z. Spivak, Pis’ma Zh. Eksp. Teor. Fiz.
33, 101 (1981) [JETP Lett. 33, 94 (1981)].
[75] D. Yu. Sharvin and Yu. V. Sharvin, Pis’ma Zh. Eksp. Teor. Fiz. 34, 285
(1981) [JETP Lett. 34, 272 (1981)].
[76] B. L. Al’tshuler, A. G. Aronov, B. Z. Spivak, D. Yu. Sharvin, and Yu. V.
Sharvin, Pis’ma Zh. Eksp. Teor. Fiz. 35, 476 (1982) [JETP Lett. 35, 588
(1982)].
[77] C. P. Umbach, S. Washburn, R. B. Laibowitz, and R. A. Webb, Phys. Rev.
B 30, 4048 (1984).
[78] G. Bergmann, Phys. Rep. 107, 1 (1984).
[79] A. G. Aronov and Yu. V. Sharvin, Rev. Mod. Phys. 59, 755 (1987).
[80] M. B¨uttiker, Y. Imry, and R. Landauer, Phys. Lett. A 96, 365 (1983).
[81] H. F. Cheung, Y. Gefen, E. K. Riedel, and W. H. Shih, Phys. Rev. B 37,
6050 (1988).
[82] Y. Gefen, Y. Imry and M. Ya. Azbel, Phys. Rev. Lett. 52, 129 (1984).
[83] B. L. Al’tshuler and B. Z. Spivak, Pis’ma Zh. Eksp. Teor. Fiz. 42, 363 (1985)
[JETP Lett. 42, 447 (1985)].
[84] S. Washburn, C. P. Umbach, R. B. Laibowitz, and R. A. Webb, Phys. Rev.
B 32, 4789 (1985).
[85] R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).
[86] L. L. Chang, L. Esaki and R. Tsu, Appl. Phys. Lett. 24, 593 (1974).
[87] S. J. Bending and M. R. Beasley, Phys. Rev. Lett. 55, 324 (1985).
[88] A. B. Fowler, G. L. Timp, J. J. Wainer and R. A. Webb, Phys. Rev. Lett.
57, 138 (1986).
[89] V. Kalmeyer and R. B. Laughlin, Phys. Rev. B 35, 9805 (1987).
[90] H. van Houten, C. W. J. Beenakker, and A. A. M. Staring, in Single Charge
Tunneling, H. Grabert and M. H. Devoret (Plenum Press, New York and Lon-
don,1991).
[91] A. Levy Yeyati and M. B¨uttiker, Phys. Rev. B 52, R14360 (1995).
[92] A. Yacoby, R. Schuster, and M. Heiblum, Phys. Rev. B 53, 9583 (1996).
[93] G. Hackenbroich, and H. A. Weidenm¨uller, Phys. Rev. Lett. 76, 110 (1996).
[94] C. Bruder, R. Fazio, and H. Schoeller, Phys. Rev. Lett. 76, 114 (1996).
[95] G. Hackenbroich, Phys. Rep. 343, 463 (2001).
[96] Z. T. Jiang, Q. F. Sun, X. C. Xie, and Y. Wang, Phys. Rev. Lett. 93, 076802
(2004).
[97] O. Entin-Wohlman, A. Aharony, Y. Imry, Y. Levinson, and A. Schiller, Phys.
Rev. Lett. 88, 166801 (2002).
[98] A. Aharony, O. Entin-Wohlman, B. I. Halperin, and Y. Imry, Phys. Rev. B
66, 115311 (2002).
[99] A. Aharony, O. Entin-Wohlman and Y. Imry, Phys. Rev. Lett. 90, 156802
(2003).
[100] V. I. Puller and Y. Meir, Phys. Rev. Lett. 104, 256801 (2010).
[101] M. Avinun-Kalish, M. Heiblum, O. Zarchin, D. Mahalu, and V. Umansky,
Nature (London) 436, 529 (2005).
[102] C. Karrasch, T. Hecht, A. Weichselbaum, Y. Oreg, J. von Delft, and V.
Meden, Phys. Rev. Lett. 98, 186802 (2007).
[103] Y. Oreg, New J. Phys. 9, 122 (2007).
[104] M. Rontani, Phys. Rev. B 82, 045310 (2010).
[105] R. A. Molina, P. Schmitteckert, D. Weinmann, R. A. Jalabert, and P.
Jacquod, Phys. Rev. B 88, 045419 (2013).
[106] N.C. van der Vaart, S.F. Godijn, Y.V. Nazarov, C.J.P.M. Hartmans, J.E.
Mooij, L.W. Molenkamp and C.T. Foxon, Phys. Rev. Lett. 74, 4702 (1995).
[107] F.R. Waugh, M.J. Berry, D.J. Mar, R.M. Westervelt, K.L. Campman and
A.C. Gossard, Phys. Rev. Lett. 75, 4702 (1995).
[108] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa, S.
Tarucha, and L. P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2002).
[109] T. Hatano, M. Stopa, and S. Tarucha, Science 309, 268 (2005).
[110] T. Hatano, Y. Tokura, S. Amaha, T. Kubo, S. Teraoka, and S. Tarucha
Phys. Rev. B 87, 241414 (2013).
[111] D. Loss and E. V. Sukhorukov, Phys. Rev. Lett. 84, 1035 (2000).
[112] J. K¨onig and Y. Gefen, Phys. Rev. Lett. 86, 3855 (2001); J. K¨onig and Y.
Gefen, Phys. Rev. B. 65, 045316 (2002).
[113] S. Bedkihal, and D. Segal, Phys. Rev. B 85, 155324 (2012).
[114] B. Kubala and J. K¨onig, Phys. Rev. B 65, 245301 (2002).
[115] K. Kang and S. Y. Cho, J. Phys. Condens. Matter 16, 117 (2004).
[116] P. A. Orellana, M. L. Ladron de Guevara, and F. Claro, Phys. Rev. B 70,
233315 (2004).
[117] H. Lu, R. L¨u, and B. F. Zhu, Phys. Rev. B 71, 235320 (2005).
[118] Z.-M. Bai, M.-F. Yang, and Y.-C. Chen, J. Phys. Condens. Matter 16, 2053
(2004).
[119] V. Moldoveanu, M. T¸ olea, A. Aldea, and B. Tanatar, Phys. Rev. B 71,
125338 (2005).
[120] T. Kubo, Y. Tokura, T. Hatano, and S. Tarucha, Phys. Rev. B 74, 205310
(2006).
[121] F. Li, X. Q. Li, W. M. Zhang, S. A. Gurvitz, EuroPhys. Lett. 88, 37001
(2009).
[122] A. W. Holleitner, C. E. Decker, H. Quin, K. Eberl, and R. H. Blick, Phys.
Rev. Lett. 87, 256802 (2001).
[123] M. Sigrist, T. Ihn, K. Ensslin, D. Loss, M. Reinwald, and W. Wegscheider,
Phys. Rev. Lett. 96, 036804 (2006).
[124] T. Hatano, T. Kubo, Y. Tokura, S. Amaha, S. Teraoka, and S. Tarucha,
Phys. Rev. Lett. 106, 076801 (2011).
[125] A. J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. Fisher, A. Garg, and
W. Zwerger, Rev. Mod. Phys. 59, 1 (1987).
[126] H. Carmichael, An open systems approach to quantum optics (Springer-
Verlag, New York, 1993).
[127] U.Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1999).
[128] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems
(Oxford University Press, Oxford, New York, 2002).
[129] W. Lu, Z. Ji, L. Pfeiffer, K. W. West, and A. J. Rimberg, Nature (London)
423, 422 (2003).
[130] J. Bylander, T. Duty, and P. Delsing, Nature (London) 434, 361 (2005).
[131] T. Fujisawa, T. Hayashi, and S. Sasaki, Rep. Prog. Phys. 69, 759 (2006).
[132] B. Ricco and M. Y. Azbel, Phys. Rev. B 29, 1970 (1980).
[133] A. P. Jauho and M. M. Nieto, Superlattices Microstruct. 5, 407 (1986).
[134] G. Garc´ıa-Calder´on and A. Rubio, Phys. Rev. A 55, 3361 (1997).
[135] R. Romo, J. Villavicencio, and M. L. Ladr´on de Guevara, Phys. Rev. B 86,
085447 (2012).
[136] M. Cini, Phys. Rev. B 22, 5887 (1980).
[137] A.-P. Jauho, N. S. Wingreen, and Y. Meir, Phys. Rev. B 50, 5528 (1994).
[138] Y. Zhu, J. Maciejko, T. Ji, H. Guo, and J. Wang, Phys. Rev. B 71, 075317
(2005).
[139] S. Kurth, G. Stefanucci, C.-O. Almbladh, A. Rubio, and E. K. U. Gross,
Phys. Rev. B 72, 035308 (2005).
[140] X. Zheng, F. Wang, C. Y. Yam, Y. Mo, and G. H. Chen, Phys. Rev. B 75,
195127 (2007).
[141] F. B. Anders and A. Schiller, Phys. Rev. Lett. 95, 196801 (2005).
[142] J. S. Jin, X. Zheng, and Y. J. Yan, J. Chem. Phys. 128, 234703 (2008).
[143] T. L. Schmidt, P. Werner, L. M¨uhlbacher, and A. Komnik, Phys. Rev. B
78, 235110 (2008).
[144] L. M¨uhlbacher and E. Rabani, Phys. Rev. Lett. 100, 176403 (2008).
[145] D. Segal, A. J. Millis, and D. R. Reichman, Phys. Rev. B 82, 205323 (2010).
[146] M. W. -Y. Tu and W. -M. Zhang, Phys. Rev. B 78, 235311 (2008); M. W.
-Y. Tu, M.-T. Lee, and W. -M. Zhang, Quantum Inf. Processing (Springer) 8,
631 (2009).
[147] J. S. Jin, M. W. -Y. Tu, W. -M. Zhang, and Y. J. Yan, New J. Phys. 12,
083013 (2010).
[148] R. Peierls, Z. Physik, 80, 763 (1933).
[149] J.M. Luttinger, Phys. Rev. 84, 814 (1951).
[150] M. B¨uttiker, Phys. Rev. B 46, 12485 (1992).
[151] A. L. Fetter and J. D. Walecka, Quantum Theory of Many Particle Systems
(McGraw-Hill, New York, 1971)
[152] J. Schwinger, J. Math. Phys. (N.Y.) 2, 407 (1961).
[153] L.V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1515 (1964) [Sov. Phys. JETP 20,
1018 (1965)].
[154] L.P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin,
New York, 1962)
[155] K.-C. Chou, Z.-B. Su, B.-L. Hao, and L. Yu, Phys. Rep. 118, 1 (1985).
[156] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
[157] R. P. Feynman and F. L. Vernon, Jr., Ann. Phys. 24, 118 (1963).
[158] W. Pauli, Festschrift zum 60. Geburtstage A. Sommerfeld (Hirzel, Leipzig,
1928), p. 30.
[159] M. V. Fischetti, J. Appl. Phys. 83, 270 (1998).
[160] I. Knezevic, Phys. Rev. B 77, 125301 (2008).
[161] S. Nakajima, Prog. Theor. Phys. 20, 948 (1958).
[162] R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).
[163] L.I. Glazman and K.A. Matveev, Pis’ma Zh. Eksp. Teor. Fiz. 48, 403 (1988)
[JETP Lett. 48, 445 (1988)].
[164] D.V. Averin and A.N. Korotkov, Zh. Eksp. Teor. Fiz. 97, 1661 (1990) [Sov.
Phys. JETP 70, 937 (1990)].
[165] C.W.J. Beenakker, Phys. Rev. B 44, 1646 (1991).
[166] Y. V. Nazarov, Physica B 189, 57 (1993).
[167] T. H. Stoof and Yu. V. Nazarov, Phys. Rev. B 53, 1050 (1996).
[168] S.A. Gurvitz, H.J. Lipkin and Ya.S. Prager, Phys. Lett. A 212, 91 (1996).
[169] S. A. Gurvitz and Y. S. Prager, Phys. Rev. B 53, 15932 (1996).
[170] X. Q. Li, J. Luo, Y. G. Yang, P. Cui, and Y. J. Yan, Phys. Rev. B 71,
205304 (2005).
[171] H. Schoeller and G. Sch¨on, Phys. Rev. B 50, 18436 (1994).
[172] L. D. Faddeev and A. A. Slavnov, Gauge Fields: Introduction to Quantum
Theory (Benjamin-Cummings, Reading, MA, 1980).
[173] Z. B. Su, L. Y. Chen, X. T. Yu, and K. C. Chou, Phys. Rev. B 37, 9810
(1988).
[174] W. M. Zhang, D. H. Feng, and R. Gilmore, Rev. Mod. Phys. 62, 867 (1990).
[175] M. W.-Y. Tu, W.-M. Zhang, and J. S. Jin, Phys. Rev. B 83, 115318 (2011).
[176] M. W.-Y. Tu, W.-M. Zhang and F. Nori, Phys. Rev. B, 86 195403 (2012).
[177] M. W.-Y. Tu, W.-M. Zhang, J. S. Jin, O. Entin-Wohlman, and A. Aharony,
Phys. Rev. B 86, 115453 (2012).
[178] When φ = 0, the amplitude enhancement of the coherence is determined
by the sign of δΓ. When μL > μR, the asymmetry of ΓL > ΓR is preferred for
larger |ρ21|.
[179] H. N. Xiong, W. M. Zhang, M. W. Y. Tu and D. Braun, Phys. Rev. A 86,
032107 (2012).
[180] G. M. DAriano, M. G. A. Paris, and M. F. Sacchi, Adv. Imaging Electron
Phys. 128, 205 (2003).
[181] Note that since we consider only noninteracting electrons, the phase rigidity
is held for arbitrary biases.When a high bias is applied, the steady-state current
can break phase rigidity due to electron-electron interactions [182].
[182] B. Spivak and A. Zyuzin, Phys. Rev. Lett. 93, 226801 (2004).
[183] Such an occupation symmetry was first found in other systems we have
studied, see [179]. This occupation symmetry can also be obtained through a
SU(2) transformation given in Ref. [121]. Also note that though the definition
of A− involves the gauge degree of freedom χ, the occupation, hA†
−A−i, is gauge
invariant.
[184] M. W.-Y. Tu, W.-M. Zhang, A. Aharony, and O. Entin-Wohlman (in
prepartion)
[185] Y. Aharonov and A. Casher, Phys. Rev. Lett. 53, 319 (1984).
[186] H. Mathur and A. D. Stone, Phys. Rev. Lett. 68, 2964 (1992).
[187] M. K¨onig, A. Tschetschetkin, E. M. Hankiewicz, J. Sinova, V. Hock, V.
Daumer, M. Sch¨afer, C. R. Becker, H. Buhmann, and L. W. Molenkamp, Phys.
Rev. Lett. 96, 076804 (2006).
[188] T. Bergsten, T. Kobayashi, Y. Sekine, and J. Nitta, Phys. Rev. Lett. 97,
196803 (2006).
[189] F. Nagasawa, J. Takagi, Y. Kunihashi, M. Kohda, and J. Nitta, Phys. Rev.
Lett. 108, 086801 (2012).
[190] I. ˇZuti´c, J. Fabian, and S. Das Sarma, Rev. Mod. Phys. 76, 323 (2004).
[191] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990).
[192] A. Oiwa, Y. Mitsumori, R. Moriya, T. S lupinski, and H. Munekata, Phys.
Rev. Lett. 88, 137202 (2002).
[193] B. T. Jonker, G. Kioseoglou, A. T. Hanbicki, C. H. Li, and P. E. Thompson,
Nat. Phys. 3, 542 (2007).
[194] P. LeClair, J. K. Ha, H. J. M. Swagten, J. T. Kohlhepp, C. H. van de Vin,
and W. J. M. de Jonge, Appl. Phys. Lett. 80, 625 (2002).
[195] T. S. Santos and J. S.Moodera, Phys. Rev. B 69, 241203(R) (2004).
[196] M. Gajek, M. Bibes, A. Barth´el´emy, K. Bouzehouane, S. Fusil, M. Varela,
J. Fontcuberta, and A. Fert, Phys. Rev. B 72, 020406(R) (2005).
[197] U. L¨uders, M. Bibes, K. Bouzehouane, E. Jacquet, J.-P. Contour, S. Fusil,
J.-F. Bobo, J. Fontcuberta, A. Barth´el´emy, and A. Fert, Appl. Phys. Lett. 88,
082505 (2006).
[198] G. Schmidt, D. Ferrand, L.W. Molenkamp, A. T. Filip, and B. J. vanWees,
Phys. Rev. B 62, R4790 (2000).
[199] K. Ando, S. Takahashi, J. Ieda, H. Kurebayashi, T. Trypiniotis, C. H. W.
Barnes, S. Maekawa, and E. Saitoh, Nature Mater. 10, 655 (2011).
[200] G. Dresselhaus, Phys. Rev. 100, 580 (1955).
[201] E. I. Rashba, Fiz. Tverd. Tela (Leningrad) 2, 1224 (1960) [Sov. Phys. Solid
State 2, 1109 (1960)]; Y. A. Bychkov and E. I. Rashba, J. Phys. C 17, 6039
(1984).
[202] J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev. Lett. 78,
1335 (1997); T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, ibid. 89, 046801
(2002).
[203] T. Koga, Y. Sekine, and J. Nitta, Phys. Rev. B 74, 041302 (2006).
[204] J. Nitta, F. E. Meijer, and H. Takayanji, Appl. Phys. Lett. 75, 695 (1999).
[205] D. Frustaglia and K. Richter, Phys. Rev. B 69, 235310 (2004).
[206] B. Moln´ar, F. M. Peeters, and P. Vasilopoulos, Phys. Rev. B 69, 155335
(2004).
[207] R. Citro, F. Romeo, and M. Marinaro, Phys. Rev. B 74, 115329 (2006).
[208] U. Aeberhard, K. Wakabayashi, and M. Sigrist, Phys. Rev. B 72, 075328
(2005).
[209] V. Moldoveanu and B. Tanatar, Phys. Rev. B 81, 035326 (2010).
[210] V. M. Ramaglia, V. Cataudella, G. De Filippis, and C. A. Perroni, Phys.
Rev. B 73, 155328 (2006).
[211] M. J. vanVeenhuizen, T.Koga, and J.Nitta, Phys. Rev. B 73, 235315 (2006).
[212] P. F¨oldi, O. K´alm´an, M. G. Benedict, and F. M. Peeters, Phys. Rev. B 73,
155325 (2006).
[213] F. Chi and J. Zheng, Appl. Phys. Lett. 92, 062106 (2008).
[214] N. Hatano, R. Shirasaki, and H. Nakamura, Phys. Rev.A 75, 032107 (2007).
[215] S.-H. Chen and C.-R. Chang, Phys. Rev. B 77, 045324 (2008).
[216] A. Aharony, Y. Tokura, G. Z. Cohen, O. Entin-Wohlman, and S. Kat-
sumoto, Phys. Rev. B 84, 035323 (2011).
[217] F. Chi, J.-L. Liu, and L.-L. Sun, J. Appl. Phys. 101, 093704 (2007).
[218] F. Chi, X. Yuan, and J. Zheng, Nanoscale Res. Lett. 3, 343 (2008).
[219] H.-T. Yin, X.-J. Liu, L.-F. Feng, T.-Q. Lu, and H. Li, Phys. Lett. A 374,
2865 (2010).
[220] K.-W. Chen, Y.-H. Su, S.-H. Chen, C.-L. Chen, and C.-R. Chang, Phys.
Rev. B 88, 035443 (2013).
[221] P. M. Shmakov, A. P. Dmitriev, and V. Yu. Kachorovskii, Phys. Rev. B
85, 075422 (2012); P. M. Shmakov, A. P. Dmitriev, and V. Yu. Kachorovskii,
ibid, 87, 235417 (2013).
[222] M. Pletyukhov, V. Gritsev, and N. Pauget, Phys. Rev. B 74, 045301 (2006).
[223] A. M. Lobos and A. A. Aligia, Phys. Rev. Lett. 100, 016803 (2008).
[224] R. Citro and F. Romeo, Phys. Rev. B 73, 233304 (2006).
[225] P. F¨oldi, M. G. Benedict, O. K´alm´an, and F. M. Peeters, Phys. Rev. B 80,
165303 (2009).
[226] H. Cruz and D. Luis, J. Phys.: Conf. Ser. 99, 012004 (2008).
[227] E. Perfetto, G. Stefanucci, and M. Cini, Phys. Rev. B 78, 155301 (2008).
[228] Y. Oreg and O. Entin-Wohlman, Phys. Rev. B 46, 2393 (1992).
[229] Y. Meir, Y. Gefen, and O. Entin-Wohlman, Phys. Rev. Lett. 63, 798 (1989).
[230] K. D. Greve D. Press, P. L. McMahon and Y. Yamamoto, Rep. Prog. Phys.
76, 092501 (2013).
[231] J. Verduijn, R. R. Agundez, M. Blaauboer and S. Rogge, New J. Phys. 15, 033020 (2013).