簡易檢索 / 詳目顯示

研究生: 王貞凰
Wang, Zhen-Huang
論文名稱: 考慮情感分析之個人化行程推薦方法
Considering Sentiment Analysis in Personal Route Recommendation
指導教授: 王惠嘉
Wang, Hei-Chia
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理研究所
Institute of Information Management
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 62
中文關鍵詞: 旅遊行程推薦個人化推薦情感分析混合式過濾
外文關鍵詞: Travel Package Recommendation, Personal Recommendation, Sentiment analysis, Hybrid filtering
相關次數: 點閱:114下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著行動網路的快速發展與web2.0的盛行,人們透過行動設備於任何時間與地點使用網路搜索感興趣的主題、分享生活,網路科技已滲透生活之中,例如:在出遊前,會經由網路得到旅遊資訊來安排行程;遊玩時,則會以行動裝置拍攝照片,並把照片上傳至社群媒體,分享休閒經驗,而這些片段的休閒經驗,亦會成為其他用戶規劃休閒或旅遊行程的參考。但網路上雖有豐富的資訊,卻也伴隨著「資訊過載」的問題,因此,有了個人化旅遊推薦的產生。
    個人化推薦以使用者的偏好做推薦,過去相關研究中,個人化旅遊推薦大致有兩個方向─以其它使用者對景點的評分和其它使用者到訪景點的次數做為偏好分析,但前者受限於資料集的資訊,後者受限於到訪次數的真實性,而這兩方法都忽略了旅行者到訪當下的感受並僅單方向給予使用者推薦內容;又由於過去的旅遊行程推薦,多僅單方向給予使用者推薦內容,並未提供可讓使用者自由更換景點的機制,以更加貼近使用者的需求。
    因此,本研究將以意見探勘技術分析使用者留下的文字內容中涵蓋的情感,套用多本辭典轉換處理,並以同義字擴增情緒字典,期望經由情感分析所得到的情感分數,能更準確的得知使用者對於該景點的喜好,在僅有文字而沒有評分的資料集中,亦能有效分析其項目偏好。
    取得使用者的偏好向量後,考量行走次數、偏好時段類型、偏好停留時間等因素,將推薦的景點組合成行程,綜合以上的因素計算行程分數,推薦Top-q組行程;而為提供使用者更快速且滿意的行程推薦,將加入調整機制,讓使用者可自由更換行程中的單一項目,選擇一定範圍內符合需求的其他偏好景點,以期能在符合使用者需求下,有效率地推薦行程給予使用者。
    最後實驗結果證明,本研究提出的方法,在MAE與Hit Rate的評估指標中,衡量預測未知值與行程推薦的表現,皆優於過去的相關研究。

    With the rapid development of mobile networks, people share travel experiences through mobile devices. Although tourists can plan itinerary through these fragmented experiences, but there is information overload problem. Therefore, according to the related works in the past, there are two directions to recommend: analyzing the rating scores and calculating the number of visits. However, both methods ignore the tourists’ receptions when they are visiting attractions and can’t support attraction replacement when generating the recommended itinerary. In order to solve above problems, the proposed method will analyze the text emotional preferences furthermore through using sentiment analysis and integrate several factors into recommended itinerary. This study will also allow users to replace locations to fit to their preference.
    The experimental results show the performance of the proposed method is better than other methods by MAE and Hit Rate.

    第1章 緒論......1 1.1 研究背景與動機......1 1.2 研究目的......5 1.3 研究範圍與限制......6 1.4 研究流程......6 1.5 論文大綱......8 第2章 文獻探討......9 2.1 社群網路服務......9 2.2 情感分析......11 2.3 推薦系統......13 2.3.1 個人化推薦......13 2.3.2 旅遊推薦的應用......14 2.4 行程規劃......16 2.5 小結......18 第3章 研究方法......19 3.1 研究架構......21 3.2 資料蒐集與處理模組......22 3.2.1 景點資訊模組......22 3.2.2 社群媒體模組......23 3.3 使用者偏好模組......23 3.3.1 情緒分析模組......24 3.3.2 使用者偏好模組......29 3.4 行程規劃......32 3.5 反饋與規劃模組......38 3.6 小結......40 第4章 系統建置與驗證......41 4.1 系統環境建置......41 4.2 實驗方法......41 4.2.1 資料來源......42 4.2.2 評估指標......44 4.3 實驗設計與結果......44 4.3.1 實驗一......45 4.3.2 實驗二......48 4.3.3 實驗三......50 4.3.4 實驗四......51 4.3.5 實驗五......52 第5章 結論及未來研究方向......55 5.1 研究成果......55 5.2 未來研究方向......58 英文參考文獻......59 中文參考文獻......62

    英文參考文獻
    Baccianella, S., Esuli, A., & Sebastiani, F. (January 2010). Sentiwordnet 3.0: An enhanced lexical resource for sentiment analysis and opinion mining. In Proceedings of the 7th international conference on language resources and evaluation, 10, 2201-2204.
    Brilhante, I., Macedo, J., Nardini, F., Perego, R., & Renso, C. (2015). On planning sightseeing tours with TripBuilder. Information Processing & Management, 51(2), 1-15. doi: http://dx.doi.org/10.1016/j.ipm.2014.10.003
    Bucur, C. (2015). Using Opinion Mining Techniques in Tourism. Procedia Economics and Finance, 23, 1666-1673.
    Chiang, H., & Huang, T. (2015). User-adapted travel planning system for personalized schedule recommendation. Information Fusion, 21(1), 3-17.
    Chen, C., Zhang, D., Guo, B., Ma, X., Pan, G., & Wu, Z. (2015). TripPlanner: Personalized Trip Planning Leveraging Heterogeneous Crowdsourced Digital Footprints. IEEE Transactions on Intelligent Transportation Systems, 16(3), 1259-1273.
    Colace, F., De Santo, M., Greco, L., Moscato, V., & Picariello, A. (2015). A collaborative user-centered framework for recommending items in Online Social Networks. Computers in Human Behavior, 51(Part B), 694-704.
    Fang, S., Lu, E., & Tseng, V. (2014, 14-18 July 2014). Trip Recommendation with Multiple User Constraints by Integrating Point-of-Interests and Travel Packages. Paper presented at the 15th International Conference on Mobile Data Management, Brisbane, QLD.
    Han, J., & Lee, H. (2015). Adaptive landmark recommendations for travel planning: Personalizing and clustering landmarks using geo-tagged social media. Pervasive and Mobile Computing, 18, 4-17.
    Huang C., & Hsieh S. (2010). Infrastructure for Cross-lingual Knowledge Representation - Towards Multilingualism in Linguistic Studies. (Taiwan NSC-granted Research Project (NSC 96-2411-H-003-061-MY3)).
    Jiang, K., Yin, H., Wang, P., & Yu, N. (2013). Learning from contextual information of geo-tagged web photos to rank personalized tourism attractions. Neurocomputing, 119(7), 17-25.
    Kaššák, O., Kompan, M., & Bieliková, M. (2015). Personalized hybrid recommendation for group of users: Top-N multimedia recommender. Information Processing & Management, 52(3), 459-477.
    Ku, L., & Chen, H. (2007). Mining Opinions from the Web: Beyond Relevance Retrieval. Journal of American Society for Information Science and Technology, Special Issue on Mining Web Resources for Enhancing Information Retrieval, 58(12), 1838-1850.
    Kumar, N., & Fan, Z. (2015). Hybrid User-Item Based Collaborative Filtering. Procedia Computer Science, 60(1), 1453-1461.
    Lenhart, Amanda, and Pew Research Center, 2015. Teen, Social Media and Technology Overview 2015. from http://citeseer.ist.psu.edu/viewdoc/download;jsessionid=5B3F86089875D5D547EB0B7433951D06?doi=10.1.1.180.4108&rep=rep1&type=pdf
    Li, Y., & Li, T. (2013). Deriving market intelligence from microblogs. Decision Support Systems, 55(1), 206-217.
    Liu, D., Omar, H., Liou, C., Chi, H., & Hsu, C. (2015). Recommending blog articles based on popular event trend analysis. Information Sciences, 305(1), 302-319.
    Liu, H., He, J., Wang, T., Song, W., & Du, X. (2013). Combining user preferences and user opinions for accurate recommendation. Electronic Commerce Research and Applications, 12(1), 14-23.
    Liu, Q., Ge, Y., Li, Z., Chen, E., & Xiong, H. (2011, 11-14 Dec. 2011). Personalized Travel Package Recommendation. Paper presented at the 11th International Conference on Data Mining, Vancouver, BC.
    Majid, A., Chen, L., Mirza, H. T., Hussain, I., & Chen, G. (2015). A system for mining interesting tourist locations and travel sequences from public geo-tagged photos. Data & Knowledge Engineering, 95, 66-86.
    MarketingCharts. (2014). Millennials Lead the Way in Sharing Product and Service Info on Social Media. from http://www.marketingcharts.com/online/millennials-lead-the-way-in-sharing-product-and-service-info-on-social-media-43430/
    Ma, W., & Chen, K. (2003). A bottom-up merging algorithm for Chinese unknown word extraction. Paper presented at the Proceedings of the second SIGHAN workshop on Chinese language processing - Volume 17, Sapporo, Japan.
    Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093-1113.
    Mo, Y., Chen, J., Xie, X., Luo, C., & Yang, L. T. (2014). Cloud-Based Mobile Multimedia Recommendation System With User Behavior Information. Systems Journal, IEEE, 8(1), 184-193.
    Noguera, J., Barranco, M., Segura, R., & Martínez, L. (2012). A mobile 3D-GIS hybrid recommender system for tourism. Information Sciences, 215(15), 37-52.
    Pang, Y., Hao, Q., Yuan, Y., Hu, T., Cai, R., & Zhang, L. (2011). Summarizing tourist destinations by mining user-generated travelogues and photos. Computer Vision and Image Understanding, 115(3), 352-363.
    Pirasteh, P., Hwang, D., & Jung, J. (2015). Exploiting matrix factorization to asymmetric user similarities in recommendation systems. Knowledge-Based Systems, 83(1), 51-57.
    Rosa, R., Rodriguez, D., & Bressan, G. (2015, 9-12 Jan. 2015). Music recommendation system based on user's sentiments extracted from social networks. Transactions on Consumer Electronics, IEEE, 61(3), 359 - 367.
    Sun, Y., Fan, H., Bakillah, M., & Zipf, A. (2013). Road-based travel recommendation using geo-tagged images. Computers, Environment and Urban Systems, 53, 110-122.
    Sun, Z., Han, L., Huang, W., Wang, X., Zeng, X., Wang, M., & Yan, H. (2015). Recommender systems based on social networks. Journal of Systems and Software, 99, 109-119.
    Xie, H., Li, X., Wang, T., Lau, R., Wong, T., Chen, L., Wang, F., Li, Q. (2015). Incorporating sentiment into tag-based user profiles and resource profiles for personalized search in folksonomy. Information Processing & Management, 52(1), 61-72.
    Xu, Z., Chen, L., & Chen, G. (2015). Topic based context-aware travel recommendation method exploiting geotagged photos. Neurocomputing, 155(1), 99-107.
    Yu, Z., Xu, H., Yang, Z., & Guo, B. (2015). Personalized Travel Package With Multi-Point-of-Interest Recommendation Based on Crowdsourced User Footprints. Transactions on Human-Machine Systems, IEEE, 46(1), 2168-2291.
    Zheng, Y., & Zhou, X. (2011). Computing with spatial trajectories. Springer.

    中文參考文獻
    TripAdvisor. (2015). 您是否觸及可為您帶來收益的連線旅客?. from https://www.tripadvisor.com.tw/TripAdvisorInsights/n2642/nin-shi-fou-chu-ji-ke-wei-nin-dai-lai-shou-yi-de-lian-xian-lu-ke
    Visa台灣旅遊意向調查. (2015). Visa調查:近9成台灣人愛分享海外旅遊經驗. from http://www.visa.com.tw/aboutvisa/mediacenter/NR_tw_200715.html
    Visa旅遊意向調查. (2015). Visa旅遊意向調查:支付卡是台灣旅客出國旅遊必備物品第一名. from http://www.visa.com.tw/aboutvisa/mediacenter/NR_tw_010615.html
    李日斌(2014)。探討臺灣網民對鄰國的情感。取自http://handle.ncl.edu.tw/11296/ndltd/53039762202008100360).
    吳蕙欣. (2011)。結合多辭典與常識網路的情緒分析系統(未出版之碩士論文)。國立台灣大學資訊工程學系,台北市。
    域動行銷(2015)。域動行銷2015年第二季台灣網路、行動調查數據報告。取自 http://www.clickforce.com.tw/news/view?id=317

    下載圖示 校內:2021-07-01公開
    校外:2021-07-01公開
    QR CODE