| 研究生: |
蕭鉉樺 Shiau, Shiuan-Hua |
|---|---|
| 論文名稱: |
單壁奈米碳管薄膜成長及利用積體電路相容製程製作N型場效電晶體之研究 Growth of Single-Walled Carbon Nanotubes Thin Filmand and Its Patterning As An N-type Field-Effect Transistor Device Using Integrated Circuit Compatible Process |
| 指導教授: |
高騏
Gau, Chie |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 138 |
| 中文關鍵詞: | 場效電晶體 、奈米碳管 、酒精催化化學氣相沈積 |
| 外文關鍵詞: | Carbon Nanotube, Alcohol Catalytic Chemical Vapor Deposition, Field-Effect Transistor |
| 相關次數: | 點閱:71 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單壁奈米碳管擁有許多卓越的電性及機械性質,因此吸引許多研究奈米相關學者的興趣,但若要將其運用在電子元件的製作上往往需要許多複雜的製程,因此在其應用上的進展趨於緩慢。本研究提供一種可製作高純度單壁奈米碳管的方法,將其成長成薄膜,以相關儀器分析此薄膜的各種性質,並利用簡易的半導體製程將之製作成場效電晶體,透過直流電性量測評估此元件的特性。在本研究中所使用的成長方法是酒精催化化學氣相沈積系統,此方法利用安全的酒精氣體作為碳源,可得到高純度的單壁奈米碳管。一般而言,影響碳管成長的主要因素為成長時之溫度、壓力與時間,因此,在研究初期透過不同的實驗參數設定,找出可大面積穩定成長的條件,分析觀察不同的實驗參數所對單壁奈米碳管性質造成的影響,作為後續元件製程的參考。
在元件的製程及特性分析方面;由於使用的製程機台與技術能力限制,本研究先行設計較大通道尺寸的上閘極模式場效電晶體,並採用高介電常數的薄膜作為閘極氧化層,成功的製作出以單壁奈米碳管薄膜做為電子通道的場效電晶體。針對不同元件尺寸分析,所有元件之特性皆為n型電晶體,且通道的長度與寬度會影響元件的特性。在元件量測分析中發現最佳的元件開關電流比約為104-105,最大電流可達10-5A,且電子移動率達239.68 cm2/Vs,相較目前常見以n型摻雜多晶矽做為電子通道的薄膜電晶體,其電子移動率約為1-10 cm2/Vs,單壁奈米碳管電晶體的電子移動率顯然高出許多。相信透過未來的研究發展及改良,此種新型的半導體材料將可取代目前的材料,而將奈米電子元件的發展帶入更穩定、更快速的境界。
This study presents the synthesis of a dense single-wall carbon nanotube (SWNT) networks on oxide/silicon substrate using alcohol as the carbon source gas. The nano-size catalysts required are made by the reduction of metal compounds in ethanol. The key point in spreading the nanoparticles on the substrate, so that the SWNT network can be grown over the entire wafer, is making the substrate surface hydrophilic. This SWNT network is so dense that it can be treated like a thin film. Analytical instruments are used to demonstrate that this as-grown SWNTs film has very uniform, stable n-type semiconductor property and does not change with time during growth. For advanced application of electronic devices with this thin film, methods of patterning this SWNT film with integrated circuit compatible processes are presented and discussed for the first time in the literature. The SWNTs thin film can be patterned successfully by photolithography and reactive ion etching process. Finally, fabrication and characteristic measurements of a field-effect transistor (FET) using this SWNT thin film are also demonstrated. The research has succeeded in fabricating thin film transistors using a semiconductor single-walled carbon nanotubes thin film as the active electronic material. The optimal SWNTs TFT achieved a mobility of 239.68 cm2/Vs and a normalized transconductance of 0.28 mS/mm. These values compare favorably to those observed in amorphous-Si TFTs whose mobility is 1 cm2/Vs and transconductance is 0.01 mS/mm are more typical. The result indicates that single-walled carbon nanotubes thin film has good electronic properties and can be readily applied in the processing of many other electronic devices.
[1] Iijima, S., 1991, “Helical Microtubules of Graphitic Carbon,” Nature, 354, pp. 56−58.
[2] Iijima, S., and Ichihashi, T., 1993, “Single-Shell Carbon Nanotubes of 1-nm Diameter,” Nature, 363, pp. 603−605.
[3] Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, C., Savoy, R., Vazquez, J., and Beyers, R., 1993, “Cobalt-Catalysed Growth of Carbon Nanotubes with Single-atomic-layer Walls,” Nature, 363, pp. 605−607.
[4] Dresselhaus, M. S., Dresselhaus, G., and Saito, R., 1992, “Carbon Fibers Based on C60 and Their Symmetry,” Physical Review B, 45, pp. 6234−6242.
[5] Mintmire, J. W., Dunlap, B. I., and White, C. T., 1992, “Are Fullerene tubules metallic,” Physical Review Letters, 68, pp. 631−634.
[6] Hamada, N., Sawada, S., and Oshiyama, A., 1992, “New One-Dimentional conductors: Graphitic microtubules,” Physical Review Letters, 68, pp. 1579−1581.
[7] Collins, P. G., and Avouris, P., 2000, “Nanotubes for Electronics,” Science American, 283, pp. 38−45.
[8] Dekker, C., 1999, “Carbon Nanotubes as molecular quantum wires,” Physics Today, 52, p. 22.
[9] Ouyang, M., Huang, J. L., Cheung, C. L., and Lieber, C. M., 2001, “Energy Gaps in Mentallic Single-Walled Carbon Nanotubes,” Science, 292, pp. 702−705.
[10] Wildoer, J. W., Venema, L. C., Rinzler, A. G., Smally, R. E., and Dekker, C., 2001 “Electronic Structure of Atomically Resolved Carbon Nanotubes,” Nature, 391, pp. 59−62.
[11] Collins, P. G., Arnold, M. S., and Avouris, P., 2001, “Engineering Carbon Nanotubes Using Electrical Breakdown,” Science, 292, pp. 706−709.
[12] Collins, P. G., and Avouris, P., 2002, “Multi-shell Conduction in Multi-Walled Carbon Nanotubes,” Applied Physics A, 74, pp. 329−332.
[13] Bachtold, A., 1999, “Aharonov Bohm Oscillations in Carbon Nanotubes,” Nature, 397, pp. 673−675.
[14] Schoenenberger, C., Bachtold, A., Strunk, C., Salvetat, J. P., and Forro, L., 1999, “Interference and Interactions in Multi Wall Carbon Nanotubes,” Applied Physics A, 69, pp. 283−295.
[15] Kuo, C. Y., Chan, C. L., Gau, C., Liu, C. W., Shiau, S. H., and Ting, S. H., 2007, “Nano Temperature Sensor Using Selective Lateral Growth of Carbon Nanotube between Electrodes,” IEEE Transactions on Nanotechnology, 6 (1), pp. 63-69.
[16] Avouris, P., and Shalom, J. W., 2003, “Carbon Nanotube Electronics,” Proceedings of the IEEE, 91 (11), pp.1772−1784.
[17] Frank, S., Poncharal, P., Wang, Z. L., and deHeer, W. A., 1998, “Carbon Nanotube Quantum Resistors,” Science, 280, pp. 1744−1746.
[18] Thess, A., Lee, R., Nikolaev, P., Dai, H. J., Petit, P., Robert, J., Xu, C. H., Lee, Y. H., Kim, S. G., Rinzler, A. G., Colbert, D. T., Scuseria, G. E., Tomanek, D., Fisher, J. E., and Smalley, R. E., 1996, “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, 273, pp. 483−487.
[19] Tibbetts, G. G., 1984, “Why are Carbon Filaments tubular?,” Journal of Crystal Growth, 66, pp. 632−638.
[20] Tibbetts, G. G., 1989, “Vapor-Grown Carbon Fibers: Status and Prospects,” Carbon, 27, pp. 745−747.
[21] Baker, R. T. K., 1989, “Catalytic Growth of Carbon Filaments,” Carbon, 27, pp. 315−323.
[22] Kong, J., Cassell, A. M., and Dai, H., 1998, “Chemical Vapor Deposition of Methane for Single-Walled Carbon Nanotubes,” Chemical Physics Letters, 292, pp. 567−574.
[23] Kong, J., Soh, H., Cassell, A., Quate, C. F., and Dai, H., 1998, “Synthesis of Individual Single-Walled Carbon Nanotubes on Patterned Silicon Wafers,” Nature, 395, pp. 878−879.
[24] Cassell A., Raymakers, J., Kong, J., and Dai, H., 1999, “Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes,” Journal of Physical Chemistry, 103, pp. 6484−6492.
[25] Dai, H., Kong, J., Zhou, C., Franklin, N., Tombler, T., Cassell, A., and Fan, S., 1999, “Controlled Chemical Routes to Nanotube Architectures, Physics, and Devices,” Journal of Physical Chemistry, 103, pp. 11246−11255.
[26] Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., and Kohno, M., 2002, “Low-temperature Synthesis of High-purity Single-Walled Carbon Nanotubes from Alcohol,” Chemical Physics Letters, 360, pp. 229−234.
[27] Shibuta, Y., and Maruyama, S., 2002, “Molecular Dynamics Simulation of Generation Process of SWNTs,” Physica B, 323, pp. 187−189.
[28] Murakami, Y., Yamakita, S., Okubo, T., and Maruyama, S., 2003, “Single-Walled Carbon Nanotubes Catalytically Grown Mesoporous Silica Thin Film,” Chemical Physics Letters, 375, pp. 393−398.
[29] Maruyama, S., Miyauchi, Y., Edamura, T., Igarashi, Y., Chiashi, S., and Murakami, Y., 2003, “Synthesis of Single-Walled Carbon Nanotubes with Narrow Diameter-distribution from Fullerene,” Chemical Physics Letters, 375, pp. 553−559.
[30] Maruyama, S., Miyauchi, Y., Murakami, Y., and Chiashi, S., 2003, “Optical Characterization of Single-Walled Carbon Nanotubes Synthesized by Catalytic Decomposition of Alcohol,” New Journal of Physics, 5, 149.1−149.12.
[31] Einarsson, E., Edamura, T., Murakami, Y., Igarashi, Y., and Maruyama, S., 2004, “A Growth Mechanism for Vertically Aligned Single-Walled Carbon Nanotubes,” Thermal Science and Engineering, 12 (4), pp. 77−78.
[32] Kohno, M., Orii, T., Hirasawa, M., Seto, T., Murakami, Y., Chiashi, S., Miyauchi, Y., and Maruyama, S., 2004, “Growth of Single-Walled Carbon Nanotubes from Size-selected Catalytic Metal Particles,” Applied Physics A, 79, pp.787−790.
[33] Murakami, Y., Chiashi, S., Miyauchi, Y., and Maruyama, S., 2004, “Direct Synthesis of Single-Walled Carbon Nanotubes on Silicon and Quartz-Based System,” Japanese Journal of Applied Physics, 43 (3), pp. 1221−1226.
[34] Maruyama, S., Murajami, Y., Shibuta, Y., Miyauchi, Y., and Chiashi, S., 2004, “Generation of Single-Walled Carbon Nanotubes from Alcohol and Generation Mechanism by Molecular Dynamics Simulations,” Journal of Nanoscience and Nanotechnology, 4, 360−367.
[35] Ohno, Y., Kurokawa, Y., Kishimoto, S., Mizutani, T., Shimada, T., Ishida, M., Okazaki, T., Shinohara, H., Murakami, Y., Maruyama, S., Sakai, A., and Hiraga, K., 2005, “Synthesis of Carbon Nanotube Peapods Directly on Si Substrate,” Applied Physics Letters, 86, 023109.
[36] Murakami, Y., Einarsson, E., Edamura, T., and Maruyama, S., 2005, “Polarization Dependence of the Optical Absorption of Single-Walled Carbon Nanotubes,” Physical Review Letters, 94 (8), 087402.
[37] Noda, S., Sugime, H., Osawa, T., Tsuji, Y., Chiashi, S., Murakami, Y., and Maruyama, S., 2006, “A Simple Combinational Method to Discover Co-Mo Binary Catalysts that Grow Vertically Aligned Single-Walled Carbon Nanotubes,” Carbon, 44, pp. 1414−1419.
[38] Einarsson, E., Murakami, Y., Kadowaki, M., Inoue, M., and Maruyama, S., 2006, “Production and Applications of Vertically Aligned Single-Walled Carbon Nanotubes,” Thermal Science and Engineering, 14, pp. 47−49.
[39] Tamura, M., Kemmochi, Y., Murakami, Y., Chino, N., Ogura, M., Naik, S. P., Takai, M., Tsuji, Y., Maruyama, S., and Okubo, T., 2006, “Synthesis of Single-Walled Carbon Nanotubes in Mesoporous Silica Film and Their Field Emission Property,” Applied Physics A, 84, 247−250.
[40] Murakami, Y., and Maruyama, S., 2006, “Detachments of Vertically Aligned Single-Walled Carbon Nanotube Film from Substrates and Their Re-Attachment to Arbitrary Surface,” Chemical Physics Letters, 422, pp. 575−580.
[41] Sze, S. M., 2001, “Semiconductor Devices: Physics and Technology,” John Willy & Sons Inc. New York.
[42] Peercy, P. S., 2000, “The Drive to Miniaturization,” Nature, 406, pp. 1023−1026.
[43] Plummer, J. D., and Griffin, P. B., 2001, “Material and Process Limits in Silicon VLSI Technology,” Proceedings of the IEEE, 89, 240−258.
[44] Semiconductor Industry Association (SIA), 2007, “International Technology Roadmap for Semiconductors,” ITRS Public Conference, Japan.
[45] Frank, D. J., Dennard, R. H., Nowark, E., Solomon, P. M., Taur, Y., and Wong, H. S. P., 2001, “Device Scaling Limits of Si MOSFETs and Their Application Dependencies,” Proceedings of the IEEE, 89, 259−288.
[46] Tans, S., Verschueren, S., and Dekker, C., 1998, “Room-Temperature Transistor Based on Single Carbon Nanotube,” Nature, 393, pp. 49−52.
[47] Martel, R., Schmidt, T., Shea, H. R., Hertel, T., and Avouris, P., 1998, “Single and Multi-Wall Carbon Nanotube Field-Effect Transistors,” Applied Physics Letters, 73, pp. 2447−2449.
[48] Martel, R., Wong, H. S. P., Chen, K., and Avouris, P., 2001, “Carbon Nanotube Field-Effect Transistors for Logic Applications,” Proceedings of IEDM 2001, pp. 159−161.
[49] Martel, R., Derycke, V., Lavoie, C., Appenzeller, J., Chen, K., Tersoff, J., and Avouris, P., 2001, “Ambipolar Electrical Transport in Semiconducting Single-Wall Carbon Nanotubes,” Physical Review Letters, 87, pp. 256 805/1−256 805/4.
[50] Wind, S., Appenzeller, J., Martel, R., Derycke, V., and Avouris, P., 2002, “Vertical Scaling of Single-Wall Carbon Nanotubes Transistors Using Top Gate Electrodes,” Applied Physics Letters, 80, pp. 3817−3819.
[51] Yu, B., Wang, H., Joshi, A., Xiang, Q., Ibok, E., and Lin, M. R., 2001, “15nm Gate Length Planar CMOS Transistor,” Proceedings of IEDM 2001, pp. 937−939.
[52] Chau, R., 2001, “A 50nm Depleted-Substrate CMOS Transistor,” Proceedings of IEDM 2001, pp. 45−48.
[53] Appenzeller, J., Knoch, J., Derycke, V., Martel, R., Wind, S., and Avouris, P., 2002, “Field-Modulated Carrier Transport in Carbon Nanotube Transistors,” Physical Review Letters, 89, pp. 126 801/1−126 801/4.
[54] Collins, P. G., Bradley, K., Ishigami, M., and Zettl, A., 2000, “Extreme Oxygen Sensitivity of Electronic Properties of Carbon Nanotubes,” Science, 287, pp. 1801−1804.
[55] Jhi, S. H., Louie, S. G., and Cohen, M. L., 2000, “Electronic Properties of Oxidized Carbon Nanotubes,” Physical Review Letters, 85, pp. 1710−1713.
[56] Derycke, V., Martel, R., Appenzeller, J., and Avouris, P., 2002, “Controlling Doping and Carrier Injection in Carbon Nanotube Transistors,” Applied Physics Letters, 80, pp. 2773−2775.
[57] Heinze, S., Tersoff, J., Martel, R., Derycke, V., Appenzeller, J., and Avouris, P., 2002, “Carbon Nanotubes as Schottky Barrier Transistors,” Physical Review Letters, 89, pp. 106 801/1−106 801/4.
[58] Lang, N. D., and Avouris, P., 2002, “Effects of Coadsorption on the Conductance of Molecular Wires,” Nano Letters, 2, pp. 1047−1050.
[59] Bachtold, A., Hadley, P., Nakanishi, T., and Dekker, C., 2001, “Logic Circuits with Carbon Nanotube Transistors,” Science, 294, pp. 1317−1320.
[60] Derycke, V., Martel, R., Appenzeller, J., and Avouris, P., 2001, “Carbon Nanotube Inter- and Intramolecular Logic Gates,” Nano Letters, 1, pp. 453−456.
[61] Liu, X., Lee, C., and Zhou, C., 2001, “Carbon Nanotube Field-Effect Inverters,” Applied Physics Letters, 79, pp. 3329−3331.
[62] Javey, A., Wang, Q., Urai, A., Li, Y., and Dai, H., 2002, “Carbon Nanotube Transistor Arrays for Multi-Stage Complementary Logic and Ring Oscillators,” Nano Letters, 2, pp. 929−932.
[63] Gruner, G.., 2007, “Nanonet Electronics,” Scientific American, May, pp. 77–83.
[64] Snow, E. S., Novak, J. P., Campbell, P. M., and Park, D., 2003, “Random Networks of Carbon Nanotubes as an Electronic Material,” Applied Physics Letters, 82, pp. 2145−2147.
[65] Snow, E. S., Novak, J. P., Lay, M. D., Houser, E. H., Perkins, F. K., and Campbell, P. M., 2004, “Carbon Nanotube Networks: Nanomaterial for Macroelectronic Applications,” Journal of Vacuum Science & Technology B, 22 (4), pp. 1990−1994.
[66] Novak, J. P., Lay, M. D., Perkins, F. K., and Snow, E. S., 2004, “Macroelectronic Applications of Carbon Nanotube Networks,” Solid-State Electronics, 48, pp. 1753−1756.
[67] Rao, A. M., Richter, E., Bandow, S., Chase, B., Eklund, P. C., Williams, K. A., Fang, S., Subbuswamy, K. R., Menon, M., Thess, A., Smalley, R. E., Dresselhaus, G., and Dresselhaus, M. S., 1997, “Diameter Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes,” Science, 275, pp. 187−191.
[68] Saito, R., Jorio, A., Hafner, H., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G., and Dresselhaus, M. S., 2001, “Chirality-Dependent G-band Raman Intensity of Carbon Nanotubes,” Physical Review B, 64, 085312.
[69] Jorio, A., Souza Filho A. G., Dresselhaus, G., Dresselhaus, M. S., Swan, A. K., Unlu¨ M. S., Goldberg, B. B., Pimenta, M. A., Hafner, J. H., Lieber, C. M., and Saito, R., 2002, “ G-band Resonant Raman Study of 62 Isolated Single-Wall Carbon Nanotubes,” Physical Review B, 65, 155412.
[70] Saito, R., Dresselhaus, G., and Dresselhaus, M. S., 2000, “Trigonal Warping Effects of Carbon Nanotubes,” Physical Review B, 61 (4), pp. 2981−2990.
[71] Jorio, A., Saito, R., Hafner, J. H., Lieber, C. M., Hunter, M., McClure, T., Dresselhaus, G., and Dresselhaus, M. S., 2001, “Structural (n, m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering,” Physical Review Letters, 86 (6), pp. 1118−1121.
[72] Avouris, P., Martel, R., Derycke, V., and Appenzeller, J., 2002, “Carbon Nanotube Transistors and Logic Circuits,” Phisica B, 323 pp. 6−14.
[73] Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H. J., 2003, “Ballistic Carbon Nanotube Field-Effect Transistor,” Nature, 424, pp. 654−657.
[74] Donghun Kang, Noejung Park, Ju-hye Ko, Eunju Bae and Wanjun Park, 2005, “Oxygen-Induced p-type Doping of a Long Individual Single-Walled Carbon Nanotube,” Nanotechnology, 16, pp. 1048−1052.
[75] Abha Misra, Pawan, K., Tyagi, M. K., Singh, D. S., Misra, 2006, “FTIR Studies of Nitrogen Doped Carbon Nanotubes,” Diamond & Related Materials, 15, pp. 385-388.
[76] Terrones, M., Ajayan, P. M., Banhart, F., Blase, X., Carroll, D. L., Charlier, J. C., Czerw, R., Foley, B., Grobert, N., Kamalakaran, R., Kohler-Redlich, P., Rühle, M., Seeger, T., Terrones, H., 2002, “N-Doping and Coalescence of Carbon Nanotubes: Synthesis and Electronic Properties,” Applied Physics A, 74, pp. 355–361.
[77] Krsti´c, V., Rikken, G. L. J. A., Bernier, P., Roth, S., and Glerup, M., 2007, “Nitrogen Doping of Metallic Single-walled Carbon Nanotubes: n-type Conduction and Dipole Scattering,” Europhysics Letters, 77 37001 pp. 1–5.
[78] Czerw, R., Terrones, M., Charlier, J.-C., Blase, X., Foley, B., Kamalakaran, R., Grobert, N., Terrones, H., Tekleab, D., Ajayan, P. M., Blau, M., Ruhle M. and Carroll. D. L., 2001, “Indentification of Electron Donor States in N–Doped Carbon Nanotubes,” Nano Letters, Vol.1, No.9, pp. 457–460.
[79] Jang, Y. T., Ahn, J. H., Lee, Y. H., and Ju, B. K., 2003, “Effect of NH3 and Thickness of Catalysts on Growth of Carbon Nanotubes Using Thermal Chemical Vapor Deposition,” Chemical Physics Letters, 372, pp. 745–749.
[80] Hu, M., Murakami, Y., Ogura, M., Maruyama, S., and Okubo, T., 2004, “Morphology and Chemical State of Co-Mo Catalysts for Growth of Single-Walled Carbon Nanotubes Vertically Aligned on Quartz Substrates,” Journal of Catalysis, 225, pp. 230–239.
[81] Unalan, H. E., and Chhowalla, M., 2005, “Investigation of Single-Walled Carbon Nanotube Growth Parameters using Alcohol Catalytic Chemical Vapor Deposition,” Nanotechnology, 16, pp. 2153–2163.
[82] Kong, J., Franklin, N. R., Zhou, C., Chapline, M. G., Peng, S., Cho, K., and Dai, H., 2000, “Nanotube Molecular Wires as Chemical Sensors,” Science, 287, pp. 622–625.
[83] Choi, W. B., Chung, D. S., Kang, J. H., Kim, H. Y., Jin, Y. W., Han, I. T., Lee, Y. H., Jung, J. E., Lee, N. S., Park, G.. S., and Kim, J. M., 1999, “Fully Sealed, High-Brightness Carbon Nanotube Field-Emission Display,” Applied Physics Letters, 75, pp. 3129–3131.
[84] Sato, H., Hata, K., Hiasa, K., and Saito, Y., 2007, “Low Temperature Growth of Carbon Nanotubes by Alcohol Catalytic Chemical Vapor Deposition for Field Emitter Applications,” Journal of Vacuum Science Technology B, 25, pp. 579–582.
[85] Wei, B. Q., Vajtai, R., Jung, Y., Ward, J., Zhang, R., Ramanath, G., and Ajayan, P. M., 2002, “Organized Assembly of Carbon Nanotubes,” Nature, 416, pp. 495–496.
[86] Teo, K. B. K., Chhowalla, M., Amaratunga, G. A. J., and Milne, W. I., 2001, “Uniform Patterned Growth of Carbon Nanotubes without Surface Carbon,” Applied Physics Letters, 79, pp. 1534–1536.
[87] Huang, S., Dai, L., and Mau, A. W. H., 2002, “Controlled Fabrication of Large-scale Aligned Carbon Nanofibers / Nanotubes Patterns by Photolithography,” Advanced Materials, 14, pp. 1140–1143.
[88] Bae, E. J., Choi, W. B., Jeong, K. S., Chu, J. U., Park, G. S., Song, S., and Yoo, I. K., 2002, “Selective Growth of Carbon Nanotubes on Pre-Patterned Porous Anodic Aluminum Oxide,” Advanced Materials, 14, pp. 277–279.
[89] Shimoda, H., Oh, S. J., Geng, H. Z., Walker, R. J., Zhang, X. B., McNeil, L. E., and Zhou, O., 2002, “Self-Assembly of Carbon Nanotubes,” Advanced Materials, 14, pp. 899–901.
[90] Javey, A., Guo, J., Wang, Q., Lundstrom, M., and Dai, H., 2003, “Ballistic Carbon Nanotube Field-Effect Transistors,” Nature, 427, pp. 654–657.
[91] Chen, Z., Appenzeller, J., Knoch, J., Lin, Y. M., and Avouris, P., 2005, “The Role of Metal-nanotube Contact in the Performance of Carbon Nanotube Field-Effect Transistors,” Nano Letters, 5, pp. 1497–1502.
[92] Felton, A., Ghijsen, J., Pireaux, J. J., Johnson R. L., Whelon, C. M., Liang, D., Tendeloo, G. V., and Bittencourt, G., 2007, “Effect of Oxygen RF Plasma on Electronic Properties of CNTs,” Journal of Physics D, 40, pp. 7379–7382.
[93] Zhu, Y. W., Cheong, F. C., Yu, T., Xu, X. J., Lim, C. T., Thong, J. T. L., Shen, Z. X., Onh, C. K., Liu, Y. J., Wee, A. T. S., and Sow, C. H., 2005, “ Effects of CF4 Plasma on the Field Emission Properties of Aligned Multi-Wall Carbon Nanotube Films,” Carbon, 43, pp. 395–400.
[94] Cho, J. H., and Kim, G. H., 2006, “Etching of Multi-Walled Carbon Nanotubes Using Energetic Plasma Ions,” Japanese Journal of Applied Physics, 45, pp. 8317–8322.
[95] Jorio, A., Pimenta, M. A., Souza Filho, A. G., Saito, R., Dresselhaus, G., and Dresselhaus, M. S., 2003, “Characterizing Carbon Nanotube Samples with Resonance Raman Scattering,” New Journal of Physics, 5, pp. 139.1–139.7.
[96] Schmidt, M. S., Nielson, T., Madsen, D. N., and Kristensen, A., 2005, “Nanoscale Silicon Structures by Using Carbon Nanotubes as Reactive Ion Etch Masks,” Nanotechnology, 16, pp. 750–753.
[97] Tans, S., Verschueren, S., and Dekker, C., 1998, “Room Temperature Transistor Based on Single Carbon Nanotube,” Nature, 393, pp. 49–52.
[98] Duesberg, G. S., Graham, A. P., Kreupl, F., Liebau, M., Seidel, R., Unger, E., and Hoenlein, W., 2004, “Ways towards the Scaleable Intergration of Carbon Nanotubes into Silicon Based Technology,” Diamond and Related Materials, 13, pp. 354–361.
[99] Hoenlein, W., Kreupl, F., Duesberg, G. S., Graham, A. P., Liebau, M., Seidel, R., and Unger, E., 2003, “Carbon Nanotubes for Microelectronics: Status and Future Prospects,” Material Science and Engineering C, 23, pp. 663–669.
[100] John, D. L., Castro, L. C., Clifford, J., and Pulfrey, D. L., 2003, “Electrostatics of Coaxial Schottky-Barrier Nanotube Field-Effect Transistors,” IEEE Transactions on Nanotechnology, 2 (3), pp. 175–180.
[101] Wang, S. J., Chai, J. W., Dong, Y. F., Feng, Y. P., Sutanto, N., Pan, J. S., and Huan, C. H., 2006, “Effect of Nitrogen Incorporation on the Electronic Structure and Thermal Stability of HfO2 Gate Dielectric,” Applied Physics Letters, 88, 192103.
[102] Fuhrer, M. S., Nygard, J., Shih, L., Forero, M., Yoon, Y. G., Mazzoni, M. S. C., Choi, H. J., Ihm, J., Louie, S. G., Zettl, A., and McEuen, P. L., 2000, “Crossed Nanotube Junctions,” Science, 288, pp. 494–497.
[103] Snow, E. S., Campbell, P. M., Ancona, M. G., and Novak, J. P., 2005, “High-mobility Carbon-Nanotube Thin-film Transistor on a Polymeric Substrate,” Applied Physics Letters, 86, 033105.