簡易檢索 / 詳目顯示

研究生: 李建勳
Lee, Chien-Hsun
論文名稱: Epstein-Barr病毒Zta蛋白質誘發的免疫調節物質對骨髓系細胞分泌介白素-10之調控
Regulation of Interleukin-10 Secretion from Myeloid Immune Cells by Epstein-Barr Virus Zta-Induced Immunomodulators
指導教授: 張堯
Chang, Yao
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 62
中文關鍵詞: EB病毒介白素-10顆粒單核球群落刺激生長因子前列腺素E2
外文關鍵詞: EBV, Zta, GM-CSF, PGE2, IL-10
相關次數: 點閱:80下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • EB病毒再活化進入溶裂期和衍生自上皮細胞的鼻咽癌高度相關。在鼻咽癌組織中會有大量白血球浸潤,並在此部位存有強烈的免疫抑制的情況。EB病毒的溶裂期蛋白質Zta是一個強效的轉錄活化子,可以在鼻咽癌細胞中上調許多細胞激素及趨化因子的表現,經由這些分泌的因子可能進而影響腫瘤周邊浸潤的免疫細胞。本篇研究利用抗體陣列分析發現,表現Zta的鼻咽癌細胞所收取的培養上清液可以促進單核球細胞株以及其分化的巨噬細胞產生介白素-10(IL-10)。我們進一步找出了兩個Zta所誘發的免疫調節物質參與了誘導單核球及巨噬細胞分泌IL-10:顆粒單核球群落刺激生長因子(GM-CSF)及前列腺素E2(PGE2)。以重組GM-CSF和PGE2刺激,可協同誘導單核球分泌IL-10;而PGE2單獨即可誘導巨噬細胞分泌IL-10。活化PGE2受體EP2/4的促效劑也可達到誘導骨髓系細胞分泌IL-10的效用。Zta能轉錄活化鼻咽癌細胞GM-CSF啟動子的-161至-5區域進而促使GM-CSF分泌;另一方面,利用環氧化酶-2(COX-2)之siRNA以及其抑制劑,證實Zta經由誘導COX-2蛋白質表現進而增加其下游PGE2的分泌。類似的結果也可以於EB病毒溶裂期感染的鼻咽癌細胞被觀察到:EB病毒的再活化可誘發鼻咽癌細胞表現GM-CSF、COX-2和PGE2,並且促進骨髓系細胞分泌IL-10。利用Zta siRNA阻斷EB病毒溶裂期進行可抑制免疫調節物質的增加及IL-10的分泌。我們的研究結果暗示,EB病毒感染的鼻咽癌細胞可能利用Zta所誘發的免疫調節物質指揮浸潤在周圍的骨髓系免疫細胞分泌抑制性細胞激素IL-10,進而建立一個偏向逃避抗腫瘤以及抗病毒免疫反應的腫瘤微環境。

    Epstein-Barr virus (EBV) reactivation into the lytic cycle has been highly associated with nasopharyngeal carcinoma (NPC), an epithelial malignancy with intensive leukocyte infiltration and local immunosuppression. The EBV lytic transactivator Zta can upregulate many cytokines and chemokines in NPC cells, so it may affect bystander immune cells through these secreted factors. In this study, using antibody array analysis, we reveal that culture supernatants of Zta-expressing NPC cells enhance production of interleukin-10(IL-10) from human monocytic cell lines and macrophages derived from them. We further propose that two Zta-induced immunomodulators may be involved in the IL-10 induction: granulocyte-macrophage colony-stimulating factor (GM-CSF) and prostaglandin E2 (PGE2). Recombinant human GM-CSF and PGE2 synergistically promote IL-10 secretion from monocytes, while PGE2 alone sufficiently increases IL-10 secretion from macrophages. Treatment with agonists activating PGE2 receptors EP2/EP4, achieves the similar IL-10-inducing effects on myeloid cells. Zta transactivates the GM-CSF promoter in NPC cells, through a Zta-responsive region that has been narrowed to -161 to -5. On the other hand, Zta induces PGE2 production in NPC cells through upregulation of an upstream enzyme cyclooxygenase-2 (COX-2), in that siRNA or a COX-2 inhibitor blocks the Zta-mediated induction of PGE2. Similar results are observed in NPC cells with EBV lytic infection. EBV reactivation can promote NPC cells to express GM-CSF, COX-2 and PGE2 and enhance IL-10 secretion from myeloid cells. The induction of immunomodulators and IL-10 secretion can be inhibited when EBV reactivation is blocked by Zta siRNA. This study suggests that, through Zta-induced immunomodulators, EBV-infected NPC cells may direct infiltrating myeloid immune cells to secrete the immunosuppressive cytokine IL-10, establishing a tumor microenvironment that favors evasion of anti-cancer or anti-viral immunity.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VII 符號及縮寫索引表 IX 緒論 1 一、Epstein-Barr病毒(EBV)簡介 1 二、EB病毒生活史 1 三、EB病毒溶裂期蛋白Zta結構與功能 3 四、EB病毒相關疾病 5 五、鼻咽癌與EB病毒再活化關係 5 六、EB病毒溶裂期的免疫逃避機制 6 七、研究動機 8 材料與方法 9 一、抗體陣列分析 9 二、建構不同片段的GM-CSF啟動子之報導質體 9 三、質體轉型及質體DNA製備 9 四、細胞株及細胞培養 10 五、細胞轉染 11 六、細胞培養上清液及蛋白質之收取 12 七、白血球濃厚液之CD14+單核球分離 12 八、細胞處理 13 九、細胞染色及流式細胞儀分析 13 十、西方點墨法分析 14 十一、酵素免疫分析 14 十二、冷光酶分析法 15 十三、質體DNA與siRNA 15 十四、西方點墨法分析使用抗體 16 實驗結果 17 一、抗體陣列分析顯示,表現EB病毒溶裂期蛋白質Zta的鼻咽癌細胞可分泌調節因子以促進單核球細胞株產生介白素-10 (IL-10)。 17 二、表現Zta的鼻咽癌細胞的培養上清液可促進單核球及巨噬細胞產生IL-10。 17 三、GM-CSF和前列腺素E2 (PGE2)可誘導單核球細胞分泌IL-10。 18 四、PGE2和其受體EP2/4的促效劑可誘導巨噬細胞分泌IL-10。 19 五、EB病毒溶裂期蛋白質Zta可誘導鼻咽癌細胞分泌GM-CSF。 19 六、Zta在鼻咽癌細胞中藉由轉活化GM-CSF基因的啟動子,而促使GM-CSF分泌。 19 七、EB病毒溶裂期蛋白質Zta可誘導鼻咽癌細胞表現環氧化酶-2(COX-2) 並促進PGE2的分泌。 20 八、Zta在鼻咽癌細胞中可轉活化COX-2基因的啟動子。 20 九、Zta經由促進COX-2的表現而增加下游PGE2的產生。 21 十、EP2及EP4拮抗劑可有效抑制表現Zta的鼻咽癌細胞上清液促進單核球和巨噬細胞分泌IL-10。 21 十一、COX-2 siRNA可有效抑制表現Zta的鼻咽癌細胞上清液促進單核球和巨噬細胞分泌IL-10。 22 十二、GM-CSF中和性抗體可有效抑制表現Zta的鼻咽癌細胞上清液促進單核球細胞分泌IL-10。 22 十三、合併COX-2 siRNA與GM-CSF中和性抗體無法更有效抑制表現Zta的鼻咽癌細胞上清液促進單核球細胞分泌IL-10。 23 十四、EB病毒進入溶裂期的鼻咽癌細胞會增加GM-CSF及PGE2的分泌和COX-2表現;同時其細胞上清液可促使單核球及巨噬細胞產生IL-10。 23 十五、EB病毒進入溶裂期的鼻咽癌細胞之培養上清液可促進CD14+單核球細胞產生IL-10。 24 十六、實驗結論 25 討論 26 一、IL-10於慢性病毒感染的角色 26 二、EB病毒調控細胞產生IL-10的方法 26 三、EB病毒調控細胞產生GM-CSF及PGE2的方法 28 四、GM-CSF及PGE2對於免疫調節的角色 28 五、GM-CSF及PGE2對於調節單核球及巨噬細胞分泌IL-10的差異 30 六、其他可能參與EB病毒誘導骨髓系細胞分泌IL-10的因子 31 七、本篇研究對於EB病毒再活化與鼻咽癌發展過程的可能角色 32 參考文獻 34 圖表 42 Curriculum Vitae 62

    Adams, A. and T. Lindahl, Epstein-Barr virus genomes with properties of circular DNA molecules in carrier cells. Proc Natl Acad Sci U S A 72, 1477-81 (1975).
    Amon, W. and P. J. Farrell, Reactivation of Epstein-Barr virus from latency. Rev Med Virol 15, 149-56 (2005).
    Baer, R., A. T. Bankier, et al., DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-11 (1984).
    Balic, A., Y. M. Harcus, et al., IL-4R signaling is required to induce IL-10 for the establishment of T(h)2 dominance. Int Immunol 18, 1421-31 (2006).
    Baratelli, F., Y. Lin, et al., Prostaglandin E2 induces FOXP3 gene expression and T regulatory cell function in human CD4+ T cells. J Immunol 175, 1483-90 (2005).
    Bergmann, C., L. Strauss, et al., Expansion of human T regulatory type 1 cells in the microenvironment of cyclooxygenase 2 overexpressing head and neck squamous cell carcinoma. Cancer Res 67, 8865-73 (2007).
    Brady, M. T., A. J. MacDonald, et al., Hepatitis C virus non-structural protein 4 suppresses Th1 responses by stimulating IL-10 production from monocytes. Eur J Immunol 33, 3448-57 (2003).
    Bronte, V., D. B. Chappell, et al., Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. J Immunol 162, 5728-37 (1999).
    Brooks, D. G., M. J. Trifilo, et al., Interleukin-10 determines viral clearance or persistence in vivo. Nat Med 12, 1301-9 (2006).
    Brown, D. M., G. L. Warner, et al., Prostaglandin E2 induces apoptosis in immature normal and malignant B lymphocytes. Clin Immunol Immunopathol 63, 221-9 (1992).
    Cayrol, C. and E. K. Flemington, Identification of cellular target genes of the Epstein-Barr virus transactivator Zta: activation of transforming growth factor beta igh3 (TGF-beta igh3) and TGF-beta 1. J Virol 69, 4206-12 (1995).
    Chang, Y., S. S. Chang, et al., Inhibition of the Epstein-Barr virus lytic cycle by Zta-targeted RNA interference. J Gen Virol 85, 1371-9 (2004).
    Chang, Y., H. H. Lee, et al., Induction of the early growth response 1 gene by Epstein-Barr virus lytic transactivator Zta. J Virol 80, 7748-55 (2006).
    Chang, Y. N., D. L. Dong, et al., The Epstein-Barr virus Zta transactivator: a member of the bZIP family with unique DNA-binding specificity and a dimerization domain that lacks the characteristic heptad leucine zipper motif. J Virol 64, 3358-69 (1990).
    Chemnitz, J. M., J. Driesen, et al., Prostaglandin E2 impairs CD4+ T cell activation by inhibition of lck: implications in Hodgkin's lymphoma. Cancer Res 66, 1114-22 (2006).
    Chen, C., D. Li, et al., Regulation of cellular and viral protein expression by the Epstein-Barr virus transcriptional regulator Zta: implications for therapy of EBV associated tumors. Cancer Biol Ther 8, 987-95 (2009).
    Chevallier-Greco, A., E. Manet, et al., Both Epstein-Barr virus (EBV)-encoded trans-acting factors, EB1 and EB2, are required to activate transcription from an EBV early promoter. EMBO J 5, 3243-9 (1986).
    Chien, Y. C., J. Y. Chen, et al., Serologic markers of Epstein-Barr virus infection and nasopharyngeal carcinoma in Taiwanese men. N Engl J Med 345, 1877-82 (2001).
    Cochet, C., D. Martel-Renoir, et al., Expression of the Epstein-Barr virus immediate early gene, BZLF1, in nasopharyngeal carcinoma tumor cells. Virology 197, 358-65 (1993).
    Countryman, J., H. Jenson, et al., Polymorphic proteins encoded within BZLF1 of defective and standard Epstein-Barr viruses disrupt latency. J Virol 61, 3672-9 (1987).
    Couper, K. N., D. G. Blount, et al., IL-10: the master regulator of immunity to infection. J Immunol 180, 5771-7 (2008).
    de Waal Malefyt, R., J. Haanen, et al., Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J Exp Med 174, 915-24 (1991).
    Dolcetti, L., E. Peranzoni, et al., Hierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSF. Eur J Immunol 40, 22-35 (2009).
    Dolyniuk, M., R. Pritchett, et al., Proteins of Epstein-Barr virus. I. Analysis of the polypeptides of purified enveloped Epstein-Barr virus. J Virol 17, 935-49 (1976).
    Ejrnaes, M., C. M. Filippi, et al., Resolution of a chronic viral infection after interleukin-10 receptor blockade. J Exp Med 203, 2461-72 (2006).
    Epstein, M. A. and Y. M. Barr, Cultivation in Vitro of Human Lymphoblasts from Burkitt's Malignant Lymphoma. Lancet 1, 252-3 (1964).
    Fedyk, E. R. and R. P. Phipps, Prostaglandin E2 receptors of the EP2 and EP4 subtypes regulate activation and differentiation of mouse B lymphocytes to IgE-secreting cells. Proc Natl Acad Sci U S A 93, 10978-83 (1996).
    Feederle, R., M. Kost, et al., The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19, 3080-9 (2000).
    Feng, P., E. C. Ren, et al., Expression of Epstein-Barr virus lytic gene BRLF1 in nasopharyngeal carcinoma: potential use in diagnosis. J Gen Virol 81, 2417-23 (2000).
    Fixman, E. D., G. S. Hayward, et al., trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. J Virol 66, 5030-9 (1992).
    Flemington, E. and S. H. Speck, Autoregulation of Epstein-Barr virus putative lytic switch gene BZLF1. J Virol 64, 1227-32 (1990).
    Flemington, E. K., A. M. Borras, et al., Characterization of the Epstein-Barr virus BZLF1 protein transactivation domain. J Virol 66, 922-9 (1992).
    Ganapathy, V., T. Gurlo, et al., Regulation of TCR-induced IFN-gamma release from islet-reactive non-obese diabetic CD8(+) T cells by prostaglandin E(2) receptor signaling. Int Immunol 12, 851-60 (2000).
    Ganesh, B. B., D. M. Cheatem, et al., GM-CSF-induced CD11c+CD8a--dendritic cells facilitate Foxp3+ and IL-10+ regulatory T cell expansion resulting in suppression of autoimmune thyroiditis. Int Immunol 21, 269-82 (2009).
    Geissler, K., M. Harrington, et al., Effects of recombinant human colony stimulating factors (CSF) (granulocyte-macrophage CSF, granulocyte CSF, and CSF-1) on human monocyte/macrophage differentiation. J Immunol 143, 140-6 (1989).
    Given, D. and E. Kieff, DNA of Epstein-Barr virus. VI. Mapping of the internal tandem reiteration. J Virol 31, 315-24 (1979).
    Goetzl, E. J., S. An, et al., Specific suppression by prostaglandin E2 of activation-induced apoptosis of human CD4+CD8+ T lymphoblasts. J Immunol 154, 1041-7 (1995).
    Grant, V., A. E. King, et al., PGE/cAMP and GM-CSF synergise to induce a pro-tolerance cytokine profile in monocytic cell lines. Biochem Biophys Res Commun 331, 187-93 (2005).
    Harizi, H., C. Grosset, et al., Prostaglandin E2 modulates dendritic cell function via EP2 and EP4 receptor subtypes. J Leukoc Biol 73, 756-63 (2003).
    Harizi, H., M. Juzan, et al., Dendritic cells issued in vitro from bone marrow produce PGE(2) that contributes to the immunomodulation induced by antigen-presenting cells. Cell Immunol 209, 19-28 (2001).
    Heidenreich, S., J. H. Gong, et al., Macrophage activation by granulocyte/macrophage colony-stimulating factor. Priming for enhanced release of tumor necrosis factor-alpha and prostaglandin E2. J Immunol 143, 1198-205 (1989).
    Hendricks, A., W. Leibold, et al., Prostaglandin E2 is variably induced by bacterial superantigens in bovine mononuclear cells and has a regulatory role for the T cell proliferative response. Immunobiology 201, 493-505 (2000).
    Henle, G., W. Henle, et al., Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci U S A 59, 94-101 (1968).
    Hilkens, C. M., A. Snijders, et al., Modulation of T-cell cytokine secretion by accessory cell-derived products. Eur Respir J Suppl 22, 90s-94s (1996).
    Hong, G. K., M. L. Gulley, et al., Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol 79, 13993-4003 (2005).
    Horst, D., D. van Leeuwen, et al., Specific targeting of the EBV lytic phase protein BNLF2a to the transporter associated with antigen processing results in impairment of HLA class I-restricted antigen presentation. J Immunol 182, 2313-24 (2009).
    Hsu, M., S. Y. Wu, et al., Epstein-Barr virus lytic transactivator Zta enhances chemotactic activity through induction of interleukin-8 in nasopharyngeal carcinoma cells. J Virol 82, 3679-88 (2008).
    Huang, Y. T., T. S. Sheen, et al., Profile of cytokine expression in nasopharyngeal carcinomas: a distinct expression of interleukin 1 in tumor and CD4+ T cells. Cancer Res 59, 1599-605 (1999).
    Hudewentz, J., G. W. Bornkamm, et al., Effect of the diterpene ester TPA on Epstein-Barr virus antigen- and DNA synthesis in producer and nonproducer cell lines. Virology 100, 175-8 (1980).
    Ji, J., G. K. Sahu, et al., HIV-1 induces IL-10 production in human monocytes via a CD4-independent pathway. Int Immunol 17, 729-36 (2005).
    Joab, I., J. C. Nicolas, et al., Detection of anti-Epstein-Barr-virus transactivator (ZEBRA) antibodies in sera from patients with nasopharyngeal carcinoma. Int J Cancer 48, 647-9 (1991).
    Jones, R. J., S. Dickerson, et al., Epstein-Barr virus lytic infection induces retinoic acid-responsive genes through induction of a retinol-metabolizing enzyme, DHRS9. J Biol Chem 282, 8317-24 (2007).
    Jones, R. J., W. T. Seaman, et al., Roles of lytic viral infection and IL-6 in early versus late passage lymphoblastoid cell lines and EBV-associated lymphoproliferative disease. Int J Cancer 121, 1274-81 (2007).
    Kared, H., B. Leforban, et al., Role of GM-CSF in tolerance induction by mobilized hematopoietic progenitors. Blood 112, 2575-8 (2008).
    Keating, S., S. Prince, et al., The lytic cycle of Epstein-Barr virus is associated with decreased expression of cell surface major histocompatibility complex class I and class II molecules. J Virol 76, 8179-88 (2002).
    Kiener, P. A., P. M. Davis, et al., Differential induction of apoptosis by Fas-Fas ligand interactions in human monocytes and macrophages. J Exp Med 185, 1511-6 (1997).
    Kutok, J. L. and F. Wang, Spectrum of Epstein-Barr virus-associated diseases. Annu Rev Pathol 1, 375-404 (2006).
    Lai, F. M., P. N. Cheng, et al., Immunohistological characteristics of the infiltrating lymphoid cells and expression of HLA class I and II antigens in nasopharyngeal carcinoma. Virchows Arch A Pathol Anat Histopathol 417, 347-52 (1990).
    Laichalk, L. L. and D. A. Thorley-Lawson, Terminal differentiation into plasma cells initiates the replicative cycle of Epstein-Barr virus in vivo. J Virol 79, 1296-307 (2005).
    Lau, K. M., S. H. Cheng, et al., Increase in circulating Foxp3+CD4+CD25(high) regulatory T cells in nasopharyngeal carcinoma patients. Br J Cancer 96, 617-22 (2007).
    Lee, Y. K., R. Mukasa, et al., Developmental plasticity of Th17 and Treg cells. Curr Opin Immunol 21, 274-80 (2009).
    Lehmann, M. H., Recombinant human granulocyte-macrophage colony-stimulating factor triggers interleukin-10 expression in the monocytic cell line U937. Mol Immunol 35, 479-85 (1998).
    Li, D., L. Qian, et al., Down-regulation of MHC class II expression through inhibition of CIITA transcription by lytic transactivator Zta during Epstein-Barr virus reactivation. J Immunol 182, 1799-809 (2009).
    Li, Q., M. K. Spriggs, et al., Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol 71, 4657-62 (1997).
    Lieberman, P. M., J. M. Hardwick, et al., The zta transactivator involved in induction of lytic cycle gene expression in Epstein-Barr virus-infected lymphocytes binds to both AP-1 and ZRE sites in target promoter and enhancer regions. J Virol 64, 1143-55 (1990).
    Lin, C. T., H. J. Kao, et al., Response of nasopharyngeal carcinoma cells to Epstein-Barr virus infection in vitro. Lab Invest 80, 1149-60 (2000).
    Liu, M. Y., Y. L. Chang, et al., Evaluation of multiple antibodies to Epstein-Barr virus as markers for detecting patients with nasopharyngeal carcinoma. J Med Virol 52, 262-9 (1997).
    Liu, M. Y., Y. T. Huang, et al., Immune responses to Epstein-Barr virus lytic proteins in patients with nasopharyngeal carcinoma. J Med Virol 73, 574-82 (2004).
    Liu, P. and S. H. Speck, Synergistic autoactivation of the Epstein-Barr virus immediate-early BRLF1 promoter by Rta and Zta. Virology 310, 199-206 (2003).
    Lo, Y. M., L. Y. Chan, et al., Quantitative analysis of cell-free Epstein-Barr virus DNA in plasma of patients with nasopharyngeal carcinoma. Cancer Res 59, 1188-91 (1999).
    Lu, J., H. H. Chua, et al., Regulation of matrix metalloproteinase-1 by Epstein-Barr virus proteins. Cancer Res 63, 256-62 (2003).
    Luka, J., B. Kallin, et al., Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology 94, 228-31 (1979).
    Lutz, M. B., R. M. Suri, et al., Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 30, 1813-22 (2000).
    Mahot, S., A. Sergeant, et al., A novel function for the Epstein-Barr virus transcription factor EB1/Zta: induction of transcription of the hIL-10 gene. J Gen Virol 84, 965-74 (2003).
    Morrissey, P. J., L. Bressler, et al., Granulocyte-macrophage colony-stimulating factor augments the primary antibody response by enhancing the function of antigen-presenting cells. J Immunol 139, 1113-9 (1987).
    Murai, M., O. Turovskaya, et al., Interleukin 10 acts on regulatory T cells to maintain expression of the transcription factor Foxp3 and suppressive function in mice with colitis. Nat Immunol 10, 1178-84 (2009).
    Murn, J., O. Alibert, et al., Prostaglandin E2 regulates B cell proliferation through a candidate tumor suppressor, Ptger4. J Exp Med 205, 3091-103 (2008).
    Murono, S., H. Inoue, et al., Induction of cyclooxygenase-2 by Epstein-Barr virus latent membrane protein 1 is involved in vascular endothelial growth factor production in nasopharyngeal carcinoma cells. Proc Natl Acad Sci U S A 98, 6905-10 (2001).
    Nemerow, G. R., M. D. Moore, et al., Structure and function of the B-lymphocyte Epstein-Barr virus/C3d receptor. Adv Cancer Res 54, 273-300 (1990).
    Nemeth, K., A. Leelahavanichkul, et al., Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 15, 42-9 (2009).
    Niiro, H., T. Otsuka, et al., Epstein-Barr virus BCRF1 gene product (viral interleukin 10) inhibits superoxide anion production by human monocytes. Lymphokine Cytokine Res 11, 209-14 (1992).
    Procopio, D. O., M. M. Teixeira, et al., Differential inhibitory mechanism of cyclic AMP on TNF-alpha and IL-12 synthesis by macrophages exposed to microbial stimuli. Br J Pharmacol 127, 1195-205 (1999).
    Ressing, M. E., D. Horst, et al., Epstein-Barr virus evasion of CD8(+) and CD4(+) T cell immunity via concerted actions of multiple gene products. Semin Cancer Biol 18, 397-408 (2008).
    Ressing, M. E., D. van Leeuwen, et al., Interference with T cell receptor-HLA-DR interactions by Epstein-Barr virus gp42 results in reduced T helper cell recognition. Proc Natl Acad Sci U S A 100, 11583-8 (2003).
    Ressing, M. E., D. van Leeuwen, et al., Epstein-Barr virus gp42 is posttranslationally modified to produce soluble gp42 that mediates HLA class II immune evasion. J Virol 79, 841-52 (2005).
    Roberge, C. J., B. Larochelle, et al., Epstein-Barr virus induces GM-CSF synthesis by monocytes: effect on EBV-induced IL-1 and IL-1 receptor antagonist production in neutrophils. Virology 238, 344-52 (1997).
    Rowe, M., B. Glaunsinger, et al., Host shutoff during productive Epstein-Barr virus infection is mediated by BGLF5 and may contribute to immune evasion. Proc Natl Acad Sci U S A 104, 3366-71 (2007).
    Salek-Ardakani, S., J. R. Arrand, et al., Epstein-Barr virus encoded interleukin-10 inhibits HLA-class I, ICAM-1, and B7 expression on human monocytes: implications for immune evasion by EBV. Virology 304, 342-51 (2002).
    Samanta, M., D. Iwakiri, et al., Epstein-Barr virus-encoded small RNA induces IL-10 through RIG-I-mediated IRF-3 signaling. Oncogene 27, 4150-60 (2008).
    Schepers, A., D. Pich, et al., Activation of oriLyt, the lytic origin of DNA replication of Epstein-Barr virus, by BZLF1. Virology 220, 367-76 (1996).
    Serafini, P., R. Carbley, et al., High-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cells. Cancer Res 64, 6337-43 (2004).
    Sinclair, A. J., M. Brimmell, et al., Pathways of activation of the Epstein-Barr virus productive cycle. J Virol 65, 2237-44 (1991).
    Sinha, P., V. K. Clements, et al., Prostaglandin E2 promotes tumor progression by inducing myeloid-derived suppressor cells. Cancer Res 67, 4507-13 (2007).
    Sixbey, J. W., E. H. Vesterinen, et al., Replication of Epstein-Barr virus in human epithelial cells infected in vitro. Nature 306, 480-3 (1983).
    Steensberg, A., C. P. Fischer, et al., IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285, E433-7 (2003).
    Strockbine, L. D., J. I. Cohen, et al., The Epstein-Barr virus BARF1 gene encodes a novel, soluble colony-stimulating factor-1 receptor. J Virol 72, 4015-21 (1998).
    Sugimoto, Y. and S. Narumiya, Prostaglandin E receptors. J Biol Chem 282, 11613-7 (2007).
    Takada, K., Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer 33, 27-32 (1984).
    Tsai, S. C., S. J. Lin, et al., EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood 114, 109-18 (2009).
    Vieira, P., R. de Waal-Malefyt, et al., Isolation and expression of human cytokine synthesis inhibitory factor cDNA clones: homology to Epstein-Barr virus open reading frame BCRFI. Proc Natl Acad Sci U S A 88, 1172-6 (1991).
    Vockerodt, M., B. Haier, et al., The Epstein-Barr virus latent membrane protein 1 induces interleukin-10 in Burkitt's lymphoma cells but not in Hodgkin's cells involving the p38/SAPK2 pathway. Virology 280, 183-98 (2001).
    Wills-Karp, M. and F. D. Finkelman, Untangling the complex web of IL-4- and IL-13-mediated signaling pathways. Sci Signal 1, pe55 (2008).
    Yao, C., D. Sakata, et al., Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat Med 15, 633-40 (2009).
    Yates, J. L., N. Warren, et al., Stable replication of plasmids derived from Epstein-Barr virus in various mammalian cells. Nature 313, 812-5 (1985).
    Yip, T. T., R. K. Ngan, et al., A possible prognostic role of immunoglobulin-G antibody against recombinant Epstein-Barr virus BZLF-1 transactivator protein ZEBRA in patients with nasopharyngeal carcinoma. Cancer 74, 2414-24 (1994).
    Yoon, S. I., B. C. Jones, et al., Same structure, different function crystal structure of the Epstein-Barr virus IL-10 bound to the soluble IL-10R1 chain. Structure 13, 551-64 (2005).
    Yoshizaki, T., H. Sato, et al., Matrix metalloproteinase 9 is induced by the Epstein-Barr virus BZLF1 transactivator. Clin Exp Metastasis 17, 431-6 (1999).
    Zdanov, A., C. Schalk-Hihi, et al., Crystal structure of Epstein-Barr virus protein BCRF1, a homolog of cellular interleukin-10. J Mol Biol 268, 460-7 (1997).
    Zhou, X., S. L. Bailey-Bucktrout, et al., Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10, 1000-7 (2009).
    Zuo, J., A. Currin, et al., The Epstein-Barr virus G-protein-coupled receptor contributes to immune evasion by targeting MHC class I molecules for degradation. PLoS Pathog 5, e1000255 (2009).
    賴曉菁, Regulation of inflammatory cytokines by Epstein-Barr virus latent membrane protein 1 (LMP1). 國立成功大學碩士論文 (2008).

    無法下載圖示 校內:2013-08-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE