| 研究生: |
林芳瑜 Lin, Fang-Yu |
|---|---|
| 論文名稱: |
基於協同意見與互動行為分析之微網誌使用者共鳴關係發掘方法 Resonance-Relationship Discovery Approach for Microblog Users Based on Coordinate Opinion and Interactive Behavior Analysis |
| 指導教授: |
郭耀煌
Kuo, Yau-Hwang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 互動行為分析 、協調意見分析 、共鳴關係 、社群媒體分析 |
| 外文關鍵詞: | Interactive behavior Analysis, Coordinate Opinion Analysis, Resonance-relationship, Social media analysis |
| 相關次數: | 點閱:135 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來在線上社群媒體隱性關係分析的領域中,許多研究專注於使用者興趣偵測以及相似度評估。在先前的這些研究中,個人檔案資訊經常被當成分析的基礎,進而加以改良或取得其他分析資訊。然而,如此的分析基礎可能發生真實狀況與個人檔案資訊中的主觀資訊不一致的現象。或是個人檔案資訊中部分資訊是過去參與活動的紀錄資訊,例如Facebook中的頁面標籤,也可能產生與當下真實情況不一致的現象。為了避免這種不一致的情況,因此,我們希望透過客觀資訊進行研究分析。本篇研究中,我們提出一個新的共鳴關係概念,共鳴關係是藉由微網誌中使用者的互動行為以及意見來探討客觀資訊的分析,而不是以個人檔案資訊為基礎。我們利用這些會隨著時間改變的互動資訊分析後建立共鳴關係,並且模組化互動資訊。最後,呈現我們的觀察、實驗結果並且討論可能存在的問題與限制。簡言之,此篇研究我們提出一個新的方法架構分析及解決在線上社群關係研究中的潛在問題。
In the field of hidden relationship analysis of community for online social media, there are lots of researches focusing on interest detection and similarity evaluation. Among conventional studies, personal profile information (explicit data) is usually the main foundation to analyze. However, inconsistency between a real facts and subjective information written by users might occur. Thus, in order to avoid this kind of problem, we think leveraging objective data to analyze might be effective. In this paper, we proposed a new concept of resonance-relationship network by considering objective information about interactive behavior and coordinate opinion on microblogs among users in addition to user profiles. We leverage interactive and time-varying data to discover resonance-relationship, and model the distribution of interactions. Finally, we showed our observation and experiment results, and discussed some problems and restrictions. In summary, we proposed a novel model to analyze and solve potential problems for online social relationships.
[Als11] Alsaleh, S., Nayak, R., Xu, Y., and Chen, L., “Improving matching process in social network using implicit and explicit user information,” Web Technologies and Applications, pp. 313-320, 2011.
[Als11] Alsaleh, S., Nayak, R., and Xu, Y., “Finding and Matching Communities in Social Networks Using Data Mining,” International Conference on Advances in Social Networks Analysis and Mining, pp. 389-393, 2011.
[Ben09] Benevenuto, F., Rodrigues, T., Cha, M., and Almeida V., “Characterizing user behavior in online social networks,” Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference, Chicago, USA, pp. 49-62, 2009.
[Cai05] Cai, D., Shao, Z. He, X. Yan, X., and Han, J., “Mining hidden community in heterogeneous social networks,” Proccedings on the 3rd international workshop on Link discovery, Chicago, pp. 58-65, 2005.
[Guo09] Guo L. et al., “Analyzing Patterns of User Content Generation in Online Social Networks,” Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, Pages 369-378, 2009.
[Gya10] Gyarmati, L. and T. Trinh, “Measuring user behavior in online social networks,” Network, IEEE, vol. 24(5), pp. 26-31, 2010.
[Kim11] Kim H.-T., Lee J.-H., and Ahn C.-W., “A Recommender System based on interactive evolutionary computation with data grouping,” Procedia Computer Science, vol. 3, pp.611-616, 2011.
[Lu11] Lu, Z., Yanlong, Wen, Haiwei, Zhang, Ying Zhang, and Xiaojie, Yuan, “User relationship index based on social network community analysis,” Business Management and Electronic Information (BMEI), International Conference on, vol. 4, pp.66-69, 2011.
[Mai08] Maia, M., J. Almeida and V. Almeida, “Identifying user behavior in online social networks,” Proceedings of the 1st Workshop on Social Network Systems, Glasgow, Scotland, pp. 1-6, 2008.
[McP01] McPherson M. et al., "Birds of a feather: Homophily in social networks," Annual review of sociology, pp. 415-444, 2001.
[Tan11] Tang L. et al., “Community detection via heterogeneous interaction analysis,” Data Mining and Knowledge Discovery, pp.1-33, 2011.
[Tur02] Turney, P. D., “Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews,” In Processing of 40th Annual Meeting on Association for Computational Linguistics, pp. 417-424, 2002.
[Tur03] Turney, P. D. and M.L. Littman, “Measuring praise and criticism: Inference of semantic orientation from association,” ACM Transactions on Information System, vol. 21, pp. 315-346, 2003.
[Vra11] Vrabl, S., J. Oliveira, and C.L.R. Motta, “#twintera!: A social matching environment based on microblogging,” Computer Supported Cooperative Work in Design (CSCWD), 15th International Conference on, pp.556-561, 2011.
[Wil09] Wilson, C., Boe, B., Sala, A., Puttaswamy, K.P.N., and Zhao, B.Y., “User interactions in social networks and their implications,” Proceedings of the 4th ACM European conference on Computer systems, Nuremberg, Germany, pp. 205-218, 2009.
[Yao11] Yao T. et al., “Context-based Friend Suggestion in Online Photo-sharing Community,” MM '11 Proceedings of the 19th ACM international conference on Multimedia, 2011.
[Wik01] Wikipedia - Concept drift, http://en.wikipedia.org/wiki/Concept_drift [retrieved: April, 2012].
[Wik02] Wikipedia - Discounted cumulative gain: http://en.wikipedia.org/wiki/Discounted_cumulative_gain [retrieved: June, 2012].
[Wik03] Wikipedis - Modularity, http://en.wikipedia.org/wiki/Modularity_(networks) [retrieved: May, 2012]
[Onl01] PHOTOGRAPHYTIPS.COM™: http://www.photographytips.com/page.cfm/1587 [retrieved: April, 2012].
[Onl02] Sentiment140: http://www.sentiment140.com/ [retrieved: May, 2012].
[Onl03] SocialMention: http://socialmention.com/ [retrieved: May, 2012].
[Onl04] Twitrratr: http://twitrratr.com/ [retrieved: May, 2012].
校內:2014-09-06公開