| 研究生: |
謝嘉濬 Hsieh, Chia-Chun |
|---|---|
| 論文名稱: |
多管道連續式細胞培養平台於奈米藥物觀測之應用 Multi-channel Continuous Cell Culture Platform and Its Applications for Continuous Nano-drug Monitoring |
| 指導教授: |
李國賓
Lee, Gwo-Bin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 及時監測 、奈米藥物 、連續式細胞培養 、多重管道 、微機電系統 、微流體 |
| 外文關鍵詞: | Microfluidic, MEMS, Real-time monitoring, Multi-channel, Continuous cell culture, Nano-drug |
| 相關次數: | 點閱:109 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
細胞培養系統在疾病檢測及新藥物篩檢及開發的過程中,扮演著極其重要的角色,不只是研究初期的材料提供者,也是研究後期的成果驗收者。傳統上,細胞培養是一個需要大量手動、反覆且耗時的過程,且研究人員必須經過嚴格訓練及具備相當的操作熟練度,在培養過程中必須小心地全程控制培養環境,包括培養箱的溫度、二氧化碳含量及培養液的酸鹼值等,以確保每次培養成果的一致性。為了全程提供適當的培養環境並避免可能的人為疏失,以期獲得大量且一致的培養成果,大部分的研究機構及藥廠皆已採用大型自動化的細胞培養系統,但其體積龐大且價格昂貴仍造成諸多不便。本研究提出以微流體(Microfluidic)理論設計並應用微機電系統(Micro-electro-mechanical-systems, MEMS)技術建構出新型連續式細胞培養(Continuous cell culture)平台,並將此平台應用於及時監測(Real-time monitoring)奈米藥物(Nano-drug)對癌細胞之影響。此平台提供一個適合細胞生長且更精確而直接的觀測方式,平台的微型化也有效減少培養區化學梯度的問題以及實驗資源的浪費。自動化傳輸系統也經特別設計,不同的培養基或藥品可經濟並有效率地經由包含了常閉式微型止回閥(Micro-check-valve)的多重管道(Multi-channel)並藉由低流速微幫浦傳送到培養區,其中多重管道及止回閥的設計可以有效減少管道間不同液體交互汙染的問題,而低流速微幫浦可以降低連續式培養時產生的剪應力對細胞的不良影響。換言之,大幅減少了費力且不穩定的人為的操作。此外,為了得到更高倍率的觀測影像,培養晶片也特別經過設計,使培養區的厚度控制在180 μm 以下,以符合一般光學顯微鏡100 倍物油鏡的工作區限制,進而達到約1000 倍的高放大倍率。於本研究中,該新式細胞培養平台不僅在大型培養箱外提供一個合適、穩定且自動的培養環境,更可應用在需要及時且高倍率的觀測上。透過實驗,成功地於培養箱外,完成人類口腔癌細胞(Oral cancer cell, OC2)的培養,並於培養末期給予藥物的刺激而得到及時且高倍率的細胞破裂影像。
A cell culture system plays an important role on evaluating drug discovery, disease study and many biological applications. Traditionally, cell culturing is a labor-intensive process that requires long hours of repetitive routine work. Well-trained personnel have to be attendant during entire cell culturing process including cell growth, harvesting, re-seeding and analysis if expensive, automatic culture systems are not available. In order to maintain viable and consistent cell lines, cell culturing also requires precise control of micro-environment such as temperature, concentration of carbon dioxide, pH. value of medium and medium flow rate. In order to improve the consistency of the cell culturing process and reduce the operating error from human intervention, large-scale automated cell culture systems have been used by most of pharmaceutical companies and research centers. However, those equipments are not only bulky but also expensive. Therefore, it still remains a need to develop a compact, flexible cell culture system. In this study, a new cell culture platform based on microfluidic technology for monitoring cancer cells response to nano-drug in real-time format was demonstrated. Continuous culture environments are main features of this developed platform. The miniaturization of the culture platform contributes favorably to a low chemical gradient culture environment and reduces consumption of samples and reagents. An automatic delivery system with a layout for achieving a lower flow rate provides an efficient and economical transportation mechanism and causes relatively low effect upon the growing of cells. In addition, the design of the multi-channel layout with normally closed micro-check-valve can deliver different liquids respectively and lower the chances of cross-contamination. As a result, it can alleviate laborious works and human error caused by manual loading process. A special design of the culture area also enables 1000X high-magnification observation during cell culture process. As a whole, not only does the new cell culture platform provide a satisfactory, steady and automatic cell culture environment, but it also allows for real-time observation of cell culture process. We have successfully cultured human oral cancer cell (OC2) and obtained the real-time images of cells response to the nano-drug by using the developed culture platform.
[1] R. Feynman, “There is plenty of room at the bottom,” Journal of Microelectromechanical Systems, Vol. 1, pp. 60-66, 1992.
[2] R. Feynman, “Infinitesimal machinery,” Journal of Microelectromechanical Systems, Vol. 2, pp. 4-14, 1993.
[3] M. Madou, “Fundamentals of microfabrication,” CRC Press, New York,
1997.
[4] N. Maluf, “An introduction to microelectromechanical systems engineering,” Artech House, Boston, 2000.
[5] A. T. Woolley, K. Q. Lao, A. N. Glazer, and R. A. Mathies, “Capillary electrophoresis chips with integrated electrochemical detection,” Analytical Chemistry, Vol. 70, pp. 684-688, 1998.
[6] Y. H. Chang, G. B. Lee, F. C. Huang, Y. Y. Chen, and J. L. Lin, “Integrated polymerase chain reaction chips utilizing digital microfluidics,” Biomedical Microdevices, Vol. 8, pp. 215-225, 2006.
[7] K. Seiler, D. J. Harrison, and A. Manz, “Planar chips technology for miniaturization and integration of separation techniques into monitoring systems,” Journal of Chromatography, Vol. 593, pp. 253-258, 1992.
[8] M. Butler, “Animal cell culture & technology,” BIOS Scientific Publishers, 2004.
[9] M. E. Kempner, and R. A. Felder, “A review of cell culture automation,” Journal of the Association for Laboratory Automation, Vol. 7, pp. 56-62, 2002.
[10] R. Gómez, R. Bashir, A. Sarikaya, M. R. Ladisch, J. Sturgis, J. P. Robinson, T. Geng, A. K. Bhunia, H. L. Apple, and S. Wereley, “Microfluidic biochip for impedance spectroscopy of biological species,” Biomedical Microdevices, Vol. 3, pp. 201-209, 2001.
[11] R. Gómez, R. Bashir, and A. K. Bhunia, “Microscale electronic detection of bacterial metabolism,” Sensors and Actuators B, Vol. 86, pp. 198-208, 2002.
[12] G. M. Walker, M. S. Ozers, and D. J. Beebe, ”Insect cell culture in microfluidic channels,” Biomedical Microdevices, Vol. 4, pp. 161-166, 2002.
[13] S. Raty, J. A. Davis, D. J. Beebe, S. L. Rodriguez-Zas, and M. B. Wheeler, “Culture in microchannels enhances in vitro embryonic development of preimplantation mouse embryos,” Theriogenology, Vol. 55, pp. 241, 2001.
[14] D. Beebe, M. Wheeler, H. Zeringue, E. Walters, and S. Raty, “Microfluidic technology for assisted reproduction,” Theriogenology, Vol. 57, pp. 125-135, 2002.
[15] H. Moriguchi, Y. Wakamoto, Y. Sugio, K. Takahashi, I. Inoue, and K. Yasudam, “An agar-microchamber cell-cultivation system: flexible change of microchamber shapes during cultivation by photo- thermal etching,” Lab on a Chip, Vol. 2, pp. 125-130, 2002.
[16] K. Kojima, H. Moriguchi, A. Hattori, T. Kaneko, and K. Yasuda, “Two-dimensional network formation of cardiac myocytes in agar microculture chip with 1480 nm infrared laser photo-thermal etching,” Lab on a Chip, Vol. 3, pp. 292-296, 2003.
[17] W. J. Chang, D. Akin, M. Sedlak, M. R. Ladisch, and R. Bashir, “Poly(dimethylsiloxane) (PDMS) and silicon hybrid biochip for bacterial culture,” Biomedical Microdevices, Vol. 5, pp. 281-290, 2003.
[18] A. M. Taylor, M. Blurton-Jones, S. W. Rhee, D. H. Cribbs, C. W. Cotman, and N. L. Jeon, “A microfluidic culture platform for CNS axonal injury, regeneration and transport,” Nature Methods, Vol. 2, pp. 599-605, 2005.
[19] M. J. Powers, K. Domansky, M. R. Kaazempur-Mofrad, A. Kalezi, A. Capitano, A. Upadhyaya, P. Kurzawski, K. E. Wack, D. B. Stolz, R. Kamm, and L. G. Griffith, “A microfabricated array bioreactor for perfused 3D liver culture,” Biotechnology and Bioengineering, Vol. 78, pp. 257-269, 2002.
[20] F. Lemaire, C. A. Mandon, J. Reboud, A. Papine, J. Angulo, H. Pointu, C. Diaz-Latoud, C. Lajaunie, F. Chatelain, A. P. Arrigo, and B. Schaack, “Toxicity assays in nanodrops combining bioassay and morphometric endpoints,” Toxicology Letters, Vol. 172, pp. 93-94, 2007.
[21] K. Bhadriraju and C. S. Chen, “Engineering cellular microenvironments to improve cell-based drug testing,” Drug Discovery Today, Vol. 11, pp. 612-620, 2002.
[22] T. H. Park, and M. L. Shuler, “Integration of cell culture and microfabrication technology,” Biotechnology Progress, Vol. 19, pp. 243-253, 2005.
[23] E. L. LeCluyse, “Human hepatocyte culture systems for the in vitro evaluation of cytochrome P450 expression and regulation,” European Journal of Pharmaceutical Sciences, Vol. 13, pp. 343-368, 2001.
[24] T. Ma, S. T. Yang, and D.A. Kniss, “Development of an in vitro human placenta model by the cultivation of human trophoblasts in a fiber-based bioreactor system,” Tissue Engineering, Vol. 5, pp. 91-102, 1999.
[25] H. Mirzadeh, F. Shokrolashi, and M. Daliri, “Effect of silicon rubber crosslink density in fibroblast cell behavior in vitro,” Journal of Biomedical Materials Research, Vol. 67A, pp. 727-732, 2003.
[26] J. N. Lee, X. Jiang, D. Ryan, and G. M. Whitesides, “Compatibility of mammalian cells on surfaces of polydimethylsiloxane,” Langmuir, Vol. 20, pp. 11684-11691, 2004.
[27] S. G. Charati, and S. A. Sterm, “Diffusion of gases in silicone polymers: molecular dynamic simulations,” Macromolecules, Vol. 31, pp. 5529-5535, 1998.
[28] J. R. Anderson, D. T. Chiu, J. C. McDonald, R. J. Jackman, O. Cherniavskaya, H. Wu, S. Whitesides, and G. M. Whitesides, “Fabrication of topologically complex three-dimensional microfluidic systems in PDMS by rapid prototyping,” Analytical Chemistry, Vol. 72, pp. 3158-3164, 2000.
[29] M. H. Wu, J. P. G. Urban, Z. Cui, and Z. F. Cui, “Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture,” Biomedical Microdevices, Vol. 8, pp. 331-340, 2006.
[30] P. J. Hung, P. J. Lee, P. Sabounchi, N. Aghdam, R. Lin, and L. P. Lee, “A novel high aspect ratio microfluidic design to provide a stable and uniform microenvironment for cell growth in high throughput mammalian cell culture array,” Lab on a Chip, Vol. 5, pp. 44-48, 2004.
[31] W. Gu, X. Zhu, N. Futai, B. S. Cho, and S. Takayama, “Computerized microfluidic cell culture using elastomeric channels and braille displays,” Proceedings of the National Academy of Sciences, Vol. 9, pp. 15861-15866, 2004.
[32] B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab on a Chip, Vol. 5, pp. 401-406, 2005.
[33] A. Paguirigan, and D. J. Beebe, “Gelatin based microfluidic devices for cell culture,” Lab on a Chip, Vol. 6, pp. 407-413, 2006.
[34] D. D. Carlo, L. Y. Wu, and L. P. Lee, “Dynamic single cell culture array,” Lab on a Chip, Vol. 6, pp. 1445-1449, 2006.
[35] M. H. Wu, J. P. G. Urban, Z. F. Cui, Z. Cui, and X. Xu, “Effect of extracellular pH on matrix synthesis by chondrocytes in 3D agarose gel,” Biotechnology Progress, Vol. 23, pp. 430-434, 2007.
[36] M. Sittinger, O. Schultz, G. Keyszer, W. W. Minuth, and G. R. Burmester, “Artificial tissues in perfusion culture,” The International Journal of Artificial Organs, Vol. 20, pp. 57-62, 1997.
[37] J. T. Borenstein, H. Terai, K. R. King, E. J. Weinberg, M. R. Kaazempur-Mofrad, and J. P. Vacanti, “Microfabrication technology for vascularized tissue engineering,” Biomedical Microdevices, Vol. 4, pp. 167-175, 2002.
[38] A. Tourovskaia, X. Figueroa-Masot, and A. Folch, “Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies,” Lab on a Chip, Vol. 5, pp. 14-19, 2005.
[39] M. Stangegaard, S. Petronis, A. M. Jørgensen, C. B. V. Christensen and M. Dufva, “A biocompatible micro cell culture chamber (μCCC) for the culturing and on-line monitoring of eukaryote cells,” Lab on a Chip, Vol. 6, pp. 1045-1051, 2006.
[40] H. Kaji, M. Nishizawa, and T. Matsue, “Localized chemical stimulation to micropatterned cells using multiple laminar fluid flows,” Lab on a Chip, Vol. 3, pp. 208-211, 2003.
[41] A. Sin, K. C. Chin, M. F. Jamil, Y. Kostov, G. Rao, and M. L. Shuler, “The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors,” Biotechnology Progress, Vol. 20, pp. 338-345, 2004.
[42] B. G. Chung, L. A. Flanagan, S. W. Rhee, P. H. Schwartz, A. P. Lee, E. S. Monuki, and N. L. Jeon, “Human neural stem cell growth and differentiation in a gradient-generating microfluidic device,” Lab on a Chip, Vol. 5, pp. 401-406, 2005.
[43] F. K. Balagaddé, L. You, C. L. Hansen, F. H. Arnold, and S. R. Quake, “Long-term monitoring of bacteria undergoing programmed population control in a microchemostat,” Science, Vol. 309, pp. 137-140, 2005.
[44] C. W. Huang, S. B. Huang, and G. B. Lee, “A microfluidic system for automatic cell culturing,” Sensors and Actuators B: Chemical, Vol. 17, pp. 1266-1274, 2007.
[45] S. B. Huang, M. H. Wu, Z. F. Cui, Z. Cui, and G. B. Lee, “A membrane-based serpentine-shape pneumatic micropump with pumping performance modulated by fluidic resistance,” Journal of Micromechanics and Microengineering, Vol. 18, 045008 (12pp), 2008.
[46] Y. N. Yang, F. C. Huang, and G. B. Lee, “A new pneumatic micropump with a high pumping rate and a high back pressure,” International Conference on Advanced Manufacture, Tainan, 2007.
[47] D. J. Laser, and J. G. Santiago, “A review of micropumps,” Journal of Micromechanics and Microengineering, Vol. 14, pp. 35-64, 2004.
[48] P. Wang, Z. L. Chen, and H. C. Chang, “A new electro-osmotic pump based on silica monoliths,” Sensors and Actuators B: Chemical, Vol. 113, pp. 500-509, 2006.
[49] N. T. Nguyen, and T. Q. Truong, “A fully polymeric micropump with piezoelectric actuator,” Sensors and Actuators B: Chemical, Vol. 97, pp. 137-143, 2004.
[50] C. G. Cooney, and B. C. Towe, “A thermopneumatic dispensing micropump,” Sensors and Actuators A: Physical, Vol. 116, pp. 519-524, 2004.
[51] T. Bourouina, A. Bosseboeuf, and J. Grandchamp, “Design and simulation of an electrostatic micropump for drug-delivery applications,” Journal of Micromechanics and Microengineering, Vol. 7, pp. 186-188, 1997.
[52] S. Santra, P. Hollaway, and C. D. Batich, “Fabrication and testing of a magnetically actuated micropump,” Sensors and Actuators B: Chemical, Vol. 87, pp. 358-364, 2002.
[53] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, Vol. 288, pp. 113-116, 2000.
[54] C. H. Wang, and G. B. Lee, “Automatic bio-sampling chips integrated with micro-pumps and micro-valve for disease detection,” Biosensors and Bioelectronics, Vol. 21, pp. 419-425, 2005.
[55] C. H. Wang, and G. B. Lee, “Pneumatically driven peristaltic micropumps utilizing serpentine-shape channels,” Journal of Micromechanics and Microengineering, Vol. 16, pp. 341-348, 2006.
[56] M.A.Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, “Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, Vol. 288, pp. 113-116, 2000.
[57] B. Bae, N. Kim, H. Kee, S. H. Kim, Y. Lee, S. Lee, and K. Park, “Feasibility test of an electromagnetically driven valve actuator for glaucoma treatment,” Journal of Microelectromechanical Systems, Vol. 11, pp. 344-542, 2002.
[58] J. S. Go, and S. Shoji, “A disposable, dead volume-free and leak-free in-plane PDMS microvalve,” Sensors and Actuators A: Physical, Vol. 114, pp. 438-444, 2004.
[59] J. H. Kim, K. H. Na, C. J. Kang, D. Jeon, and Y. S. Kim, “A disposable thermopneumatic-actuated microvalve stacked with PDMS layers and ITO-coated glass,” Microelectronic Engineering, Vol. 73-74, pp. 864-869, 2004.
[60] C. R. Tamanaha, L. J. Whitman, and R. J. Colton, “Hydric macro-micro fluidics system for a chip-based biosensor,” Journal of Micromechanics and Microengineering, Vol. 12, pp. 7-17, 2002.
[61] C. Yamahata, F. Lacharme, Y. Burri, and M. A. M. Gijs, “A ball valve micropump in glass fabricated by powder blasting,” Sensors and Actuators B: Chemical, Vol. 110, pp. 1-7, 2005.
[62] T. Pan, S. J. McDonald, E. M. Kai, and B. Ziaie, “A magnetically driven PDMS micropump with ball check-valves,” Journal of Micromechanics and Microengineering, Vol. 15, pp. 1021-1026, 2005.
[63] W. H. Grover, A. M. Skelley, C. N. Liu, E. T. Lagally, and R. A. Mathies, “Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices,” Sensors and Actuators B: Chemical, Vol. 89, pp. 315-323, 2003.
[64] E. T. Lagally, J. R. Scherer, R. G. Blazej, N. M. Toriello, B. A. Diep, M. Ramchandani, G. F. Sensabaugh, L. W. Riley, and R. A. Mathies, “Integrated portable genetic analysis microsystem for pathogen/infectious disease detection,” Analytical Chemistry, Vol. 76, pp. 3162-3170, 2004.
[65] M. Kanai, H. Abe, T. Munaka, Y. Fujiyama, D. Uchida, A. Yamayoshi, H. Nakanishi, A. Murakamid, and S. Shoji, “Micro chamber for cellar analysis integrated with negligible dead volume sample injector,” Sensors and Actuators A: Physical, Vol. 114, pp. 29-34, 2004.
[66] V. Studer, R. Jameson, E. Pellereau, A. Pepin, and Y. Chen, “A microfluidic mammalian cell sorter based on fluorescence detection,” Microelectronic Engineering, Vol. 73-74, pp. 852-857, 2004.
[67] Y. C. Wang, M. H. Choi, and J. Han, “Two-dimensional protein separation with advanced sample and buffer isolation using microfluidic valves,” Analytical Chemistry, Vol. 76, pp. 4426-4431, 2004.
[68] S. Timoshenko, and S. Woinowsky-Krieger, ”Theory of plates and shells,” McGraw-Hill, New York, 1959.
[69] A. D. Kerr, and H. Alexander, “An application of the extended Kantorovich method to the stress analysis of a clamped rectangular plate,” Acta Mechanica, Vol. 6, pp. 180-196, 1968.
[70] 謝宗閔, “使用微機電系統技術進行微小型聚合酵素連鎖反應系統之研製,” 國立成功大學電機工程學系碩士論文, 2003.
[71] 李正中, “薄膜光學與鍍膜技術,” 藝軒圖書出版社, 2001.
[72] B. E. Slentz, N. A. Penner, and F. E. Regnier, “Capillary electrochromatography of peptides on microfabricated poly(dimethylsiloxane) chips modified by cerium(IV)-catalyzed polymerization,” Journal of Chromatography A, Vol. 948, pp. 225–233, 2002.
[73] 戴健軒, “細胞分離及細胞核萃取之自動化晶片平台,” 國立成功大學工程科學系碩士論文, 2005.
[74] Data sheet for NANOTM SU8 negative tone photoresists, formulations 50 & 100, released by MICRO-CHEM. corp.
[75] Data sheet for NANOTM SU8 negative tone photoresists, formulations 2-25, released by MICRO-CHEM. corp.
[76] R. D. Anderson, and N. A. Berger, “Mutagenicity and carcinogenicity of topoisomerase-interactive agents,” Mutation Research, Vol. 309, pp. 109-142, 1994.
[77] R. Olinsji, P. Jaruga, M. Foksinski, K. Bialkowski, and J. Tujakowski, “Epirubicin-induced oxidative DNA damage and evidence for its repair in lymphocytes of cancer patients who are undergoing chemotherapy,” Molecular Pharmacology, Vol. 52, pp. 882-885, 1997.
[78] X. Y. Wu, H. J. Liu, J. Q. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. F. Ge, F. Peale, and M. P. Bruchez, “Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots,” Nature Biotechnology, Vol. 21, pp. 41-46, 2003.
[79] J. K. Jaiswal, H. Mattoussi, J. M. Mauro, and S. M. Simon, “Long-term multiple color imaging of live cells using quantum dot bioconjugates,” Nature Biotechnology, Vol. 21, pp. 47-51, 2003.
[80] T. Mosmann, “Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays,” Journal of Immunological Methods, Vol. 65, pp. 55-63, 1983.