| 研究生: |
吳幸綿 Wu, Shing-Mein |
|---|---|
| 論文名稱: |
利用小片段干擾核醣核酸探討凝血酶調節素功能 Study the Function of Thrombomodulin Using Small Interfering RNAs |
| 指導教授: |
施桂月
Shi, Guey-Yueh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | 凝血酶調節素 、角質細胞 、腺相關病毒 、RNA干擾技術 |
| 外文關鍵詞: | RNA interference, HaCaT cells, AAV, Thrombomodulin |
| 相關次數: | 點閱:60 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類凝血酶調節素(Thrombomodulin;簡稱TM)是血管內皮細胞表面的一種醣蛋白,它是身體中重要的抗凝血分子,主要是藉著結合凝血酶而限制凝血酶的促凝血活性及生理活性,科學家們利用包括生化分析及基因改造老鼠等方法探討凝血酶調節素的生理功能,發現凝血酶調節素也扮演抑制血塊溶解,抗發炎反應,抑制腫瘤細胞增生,維持正常的懷孕過程及胚胎發育等重要角色。
本論文選用RNA干擾技術(RNA interfenerce,RNAi)探討凝血酶調節素在角質細胞的功能。RNAi是一種具有序列專一性的小片段雙股RNA,可抑制特定基因進行後轉錄表現(post-transcriptional expression),是近年來研究基因功能的利器。我們設計不同的人類凝血酶調節素的小片段干擾RNA,構築在具有哺乳動物第三型RNA polymerase U6啟動子的載體上,利用U6 啟動子來轉譯小片段干擾RNA(siRNA),再將siRNA與可以表現凝血酶調節素的質體同時轉染到人類黑色素瘤A2058細胞,發現可以顯著降低凝血酶調節素的蛋白表現。進一步將siRNA的質體轉染到人類上皮細胞HaCaT細胞中,siRNA 亦可以降低HaCaT 細胞內源性的凝血酶調節素,同時細胞表面上的凝血酶調節素活化Protein C的活性也降低。此外,抑制凝血酶調節素表現造成細胞生長與移動能力均增快,顯示凝血酶調節素具有調節HaCaT細胞生長與移動的功能。
在另一方面,我們嘗試藉由腺相關病毒(adeno-associated viral,AAV) 傳送siRNA的基因到其他的哺乳類細胞;構築表現加強型綠色螢光蛋白(EGFP)基因以作為標記的siRNA重組腺相關病毒質體,在293細胞中同時轉染此具有EGFP的siRNA重組腺病毒質體,與具有AAV Rep及Cap基因表現的質體,及第三個含腺病毒helper基因的質體,以產生重組病毒,所產出的病毒已經可以成功的感染人類子宮頸上皮細胞HeLa 細胞,使其表現綠色的螢光,將進一步應用於探討凝血酶調節素的功能。
Thrombomodulin (TM) is a glycoprotein that was originally identified on vascular endothelium and is well-characterized as a natural endothelial anticoagulant factor. Studies by several investigators have elucidated multiple aspects of TM functions in fibrinolysis, inflammation, proliferation, and in embryogenesis. Functional evaluation of TM in the epithelium cell line HaCaT cells was performed by using RNA interference (RNAi) in this study. RNAi is a sequence-specific post-transcriptional gene silencing mechanism mediated by double-stranded RNA (dsRNA) molecules. It has become a popular research tool in annotating gene function. We used the vector coding a hairpin siRNA against TM gene under the control of mammalian polymerase III U6 promoter. The initial analysis of TM siRNA efficiency was performed in TM negative A2058 cells co-transfected with siRNA and a TM-expressing construct. The best candidate of siRNA that could effectively suppress TM expression was selected and used in the study on the function of HaCaT cells. The endogenous TM level was markedly reduced by siRNA. Protein C activation assay revealed that siRNA diminished TM expression and reduced the TM activity on the cell surface. Moreover, knockdown of TM expression increased the HaCaT cell proliferation and migration, but not in mock cells with control plasmid. These results indicated that siRNA-mediated gene silencing of endogenous TM transcripts has the potential applications for studying TM functions in the epithelium keratinocytes.
In another way, we used a commercially adenoassociated viral (AAV) vector for siRNA delivery into mammalian cells. The recombinant AAV vector expresses the enhanced green fluorescent protein (EGFP) under the control of CMV promoter and a U6 promoter-driven hairpin siRNA against TM gene. Recombinant AAV infectious viral particles were produced successfully in 293 cells by cotransfecting three plasmids containing pAAV-EGFP vector genes, adenovirus helper genes, and a vector genome pAAV-RC (replication and capsid). Significantly high level of infection efficiency was achieved by examining the EGFP expression in HeLa cells after infection. We will further apply the infectious virus to deliver siRNA into other TM-expressed cells for studying the function of TM.
1 Ali RR, Reichel MB, Thrasher AJ, Levinsky RJ, Kinnon C, Kanuga N, Hunt DM, Bhattacharya SS. Gene transfer into the mouse retina mediated by an adeno-associated viral into vector. Hum. Mol. Genet. 5:591-4 (1996)
2 Bajzar L. Thrombin activatable fibrinolysis inhibitor and an antifibrinolytic pathway. Arterioscler Thromb Vasc Biol. 20:2511-8 (2000)
3 Bartlett JS, Wilcher R., Samulski RJ. Infectious entry pathway of adeno-associated virus and adeno-associated virus vectors. J Virol. 74:2777-85 (1999)
4 Bernstein E, Caudy AA, Hammond SM, Hannon GJ. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363-6 (2001)
5 Boffa MC, Burke B, Haudenschild CC. Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J. Histochem. Cytochem. 35:1267-76 (1987)
6 Broze GJ Jr, Higuchi DA. Coagulation-dependent inhibition of fibrinolysis:role of carboxypeptidase and the premature lysis of clots from hemophilic plasma. Blood 88:3815-23 (1996)
7 Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550-3 (2002)
8 Bugge TH, Kombrinck KW, Flick MJ, Daugherty CC, Danton MJ, Degen JL. Loss of fibrinogen rescues mice from the pleiotropic effect of plasminogen deficiency. Cell 87:709-19 (1996)
9 Chirmule N, Propert K, Magosin S, Qian Y, Qian R, Wilson J. Immune responses to adenovirus and adeno-associated virus in humans. Gene Ther. 6:1574-83 (1999)
10 Clark RAF. The molecular and cellular biology of wound repair. New York: Plenum. (1996)
11 Collaco RF, Cao X, Trempe JP. A hlper virus-free packaging system for recombinant adeno-associated virus vectors. Gene 238:397-405(1999)
12 Conrad Ck, Allen SS, Afione SA, Reynolds TC, Beck SE, Fee-Maki M, Barrazza-Ortiz X, Adams R, Askin FB, Carter BJ, Guggino WB, Flotte TR. Safety of single-dose administration of an adeno-associated virus (AAV)-CFTR vector in the primate lung. Gene Ther. 3:658-68(1996)
13 Conway EM, Boffa MC, Nowakowski B, Steiner-Mosonyi M. An ultrastructural study of thombomodulin endocytosis: internalization occurs via clathrin-coated and non-coated pits. J. Cell Physiol. 151:604-612 (1992)
14 Conway E, Nowakowski B, Steiner-Mosonyi M. Thrombomodulin lacking the cytoplasmic domain efficiently internalizes thrombin via nonclathrin-coated, pit-mediated endocytosis. J. Cell Physiol. 158:285-98 (1994)
15 Conway EM, Pollefeyt S, Collen D, Steiner-Mosonyi M. The amino terminal lectin-like domain of thrombomodulin is required for constitutive endocytosis. Blood 89:652-61 (1997)
16 Cullen BR. RNA interence : antiviral defense and genetic tool. Nat. Immunol. 3:597-9 (2002)
17 de Munk GA, Parkinson JF, Groeneveld E, Bang NU, Rijken DC. Role of the glycosaminoglycan component of thrombomodulin in its acceleration of the inactivation of single-chain urokinase-type plasminogen activator by thrombin. Biochem. J. 290:655-9 (1993)
18 DeBault LE, Esmon NL, Olson JR, Esmon CT. Distribution of the thrombomodulin antigen in the rabbit vasculature. Lab. Invest. 54:172-8 (1986)
19 Drittanti L, Rivet C, Manceau P, Danos O, Vega M. High throughput production, screening and analysis of adeno-associated viral vectors. Gene Ther. 7:924-9 (2000)
20 Elbashir SM, Harborth J, Weber K, Tusch T. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Method 26:199-213 (2002)
21 Elbashir SM, Lendeckel W, Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15:188-200 (2001)
22 Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494-8 (2001)
23 Esmon CT. Thrombomodulin as a model of molecular mechanism that modulate protease specificity and function at the vessel surface. FASEB J. 9: 946-55 (1995)
24 Esmon CT, Owen WG. Identification of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. Proc. Natl. Acad. Sci. U.S.A. 78:2249-52 (1981)
25 Esmon CT, Esmon NL, Harris KW. Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J. Biol. Chem. 257:7944-7 (1982)
26 Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806-11 (1998)
27 Fuchs E. Epdermal differentation : the bare essentials. J. Cell Biol. 111:2807-14 (1990)
28 Gniadecki R. Effects of 1,25-dihydroxyvitamin D3 and its 20-epi analogues (MC 1288, MC1301, KH 1060), on clonal keratinocyte growth : evidence for differentiation of keratinocyte stem cells and analysis of the modulatory effects of cytokines. Br. J. Pharmacol. 120:1119-27 (1997)
29 Gniadecki R. Regulation of keratinocyte proliferation. Gen. Pharmac. 30:619-22 (1998)
30 Grimm D, Kern A, Rittner K, Kleinschmidt JA. Novel tools for production and purification of recombinant adenoassociated virus vectors. Hum. Gene Ther. 9:2745-60 (1998)
31 Hallek M, Wendtner CM. Recombinant adeno-associated virus (rAAV) vectors for somatic gene therapy: recent advances and potential clinical application. Cytokines Mol. Ther. 2:69-79 (1996)
32 Hauser PJ, Agrawal D, Flanagan M, Pledger WJ. The role of p27kip1 in the in vitro differentiation of murine keratinocytes. Cell Growth Differ. 8:203-11 (1997)
33 Healy AM, Rayburn HB, Rosenberg RD, Weiler H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc. Natl. Acad. Sci. U.S.A. 92:850-4 (1995)
34 Hermonat PL, Muzyczka N. Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc. Natl. Acad. Sci. U.S.A. 81:6466-70 (1984)
35 Honda G, Masaki C, Zushi M, Tsuruta K, Sata M. The roles played by the D2 and D3 domains of recombinant human thrombomodulin in its function. J. Biochem. 118:1030-6 (1995)
36 Huang HC, Shi GY, Jiang SI, Shi CS, Wu CM, Yang HY, Wu HL. Thrombomodulin-mediated cell adhesion : involvement of its lectin-like domain. J. Biol. Chem. 278:46750-9 (2003)
37 Hutvagner G, Zamore PD. RNAi : nature abhors a double-strand. Curr. Opin. Genet. Dev. 12:225-32 (2002)
38 Imada M, Imada S, Iwasaki H, Kume A, Yamaguchi H, Moore EE. Fetomodulin: marker surface protein of fetal development which is modulatable by cyclic AMP. Dev. Biol. 122:483-91 (1987)
39 Imada S, Yamaguchi H, Nagumo M, Katayanagi S, Iwasaki H, Imada M. Identification of fetomodulin, a surface marker protein of fetal development, as thrombomodulin by gene cloning and functional assays.
Dev. Biol. 140:113-22 (1990)
40 Jones PH, Watt FM. Separation of epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73:713-24 (1993)
41 Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell 80:83-93 (1995)
42 Karukonda SR, Flynn TC, Boh EE, McBurney EI, Russo GG, Millikan LE. The effects of drugs on wound healing: part 1. Int. J. Dermatol. 39:250-7 (2000)
43 Kennel SJ, Lankford T, Hughes B, Hotchkiss JA. Quantitation of a murine lung endothelial cell protein, P112, with a double monoclonal antibody assay. Lab. Invest. 59:692-701 (1988)
44 Kessler PD, Podsakoff GM, Chen X, McQuiston SA, Colosi PC, Matelis LA, Kurtzman GJ, Byrne BJ. Gene delivery to skeletal muscle results in expression and systemic delivery of a therapeutic protein. Proc. Natl. Acad. Sci. U.S.A. 93:14082-7 (1996)
45 Kokame K, Zheng X, Sadler JE. Activation of thrombin-activable fibrinolysis inhibitor requires epidermal growth factor-like domain 3 of thrombomodulin and it’s inhibited competitively by protein C. J. Biol. Chem. 273:12135-9 (1998)
46 Koyama T, Parkinson JF, Aoki N, Bang NU, Muller-Berghaus G, Preissner KT. Relationship between post-translational glycosylation and anticoagulant function of secretable recombinant mutants of human thrombomodulin. Br. J Haematol. 78:515-22 (1991)
47 Kurosawa S, Galvin JB, Esmon NL, Esmon CT. Proteolytic formation and properties of functional domains of thrombomodulin. J. Biol. Chem. 262:2206-12 (1987)
48 Lager DJ, Callaghan EJ, Worth SF, Raife TJ, Lentz SR. Cellular localization of thrombomodulin in human epithelium and squamous malignancies. Am. J. Pathol. 146:933-43 (1995)
49 Laughlin CA, Tratschin JD, Coon H, Carter BJ. Cloning of infectious adeno-associated virus genomes in bacterial plasmids. Gene 23:65-73 (1983)
50 Li J, Samulski RJ, Xiao X. Role for highly regulated rep gene expression in adeno-associated virus vector production. J. Virol. 71:5236-43 (1997)
51 Liu YL, Wagner K, Robinson N, Sabatino D, Margaritis R, Xiao W, and Herzog RW. Optimized production of high-titer recombinant adeno-associated virus in Roller Bottles. BioTechniques. 34:184-9 (2003)
52 Maruno M, Yoshimine TI, kuroda R, Ishii H, Hayakawa T. Expression of thrombomodulinnin astrocytomas of various malignancy and in gliotic and normal brains. J. Neurooncol. 19:155-60 (1994)
53 Maruyama I, Bell CE, Majerus PW. Thrombomodulin is found on endothelium of arteries, veins, capillaries and lymphatics, and on syncytiotrophoblast of human placenta. J. Cell Biol. 101:363-71 (1985)
54 Matsushita Y, Yoshiie K, Imamura Y, Ogawa H, Imamura H, Takao S, Yonezawa S, Aikou T, Maruyama I, Sato E. A subcloned human esophageal squamous cell carcinoma cell line with low thrombomodulin wxpression showed increased invasiveness compared with a high thrombomodulin-expressing cline-thrombomodulin as a possible candidate for an adhesion molecle of squamous cell carcinoma. Cancer Lett. 127:195-201 (1998)
55 McCachren SS, Diggs J, Weinberg JB, Dittman WA. Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood 78:3128-32 (1991)
56 McEver R. Leukocyte interactions mediated by selectins. Thromb. Haemost. 66:80-7 (1991)
57 Mizutani H, Hayashi T, Nouchi N, Ohyanagi S, Hashimoto K, Shimizu M, Suzuki K. Functional and immunoreactive thrombomodulin expressed by keratinocytes. J. Invest. Dermatol. 103:825-8 (1994)
58 Mizutani H, Ohyanagi S, Hayashi T, Groves RW, Suzuki K, Shimizu M. Functional thrombomodulin expression on epithelisl skin tumours as a differentiation marker for suprabasal keratinocytes. Br. J. Dermatol. 135:187-93 (1996)
59 Napoli C, Lemieux C, Jorgensen R. Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279-89 (1990)
60 Nesheim M, Wang W, Boffa M, Nagashima M, Morser J, Bajzar L. Thrombin thrombomodulin and TAFI in the molecular link between coagulation and fibrinolysis. Thromb. Haemost. 78:386-91 (1997)
61 Ohji T, Urano H, Shirahata A, Yamagishi M, Higashi K, Gotoh S, Karasaki Y. Transforming growth factor beta 1 and beta 2 induce down-modulation of thrombomodulin in human umbilical vein endothelial cells. Thromb. Haemost. 73:812-8 (1995)
62 Paddison PJ, Caudy AA, Hannon GJ. Stable suppression of gene expression by RNAi in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 99:1443-8 (2002)
63 Paddison PJ, Caudy AA, Bernstein E, Hannon GJ, Conklin DS. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev. 16:948-58 (2002)
64 Parkinson JF, Garcia JG, Bang NU. Decreased thrombin affinity of cell-surface thrombomodulin following treatment of cultured endothelial cells with beta-D-xyloside. Biochem. Biophys. Res. Commun. 169:177-83 (1990)
65 Patthy L. Detecting distant homologies of mosaic proteins. Analysis of the sequences of thrombomodulin, thrombospondin complement components C9, C8 alpha and C8 beta, vitronectin and plasma cell membrane glycoprotein PC-1. J. Mol. Biol. 202:689-96 (1988)
66 Pereira DJ, McCarty DM, Muzyczka N. The adeno-associated virus (AAV) Rep protein acts as both a repressor and an activator to regulate AAV transcription during a productive infection. J. Virol. 71:1079-88 (1997)
67 Petersen TE. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS Lett. 231:51-3(1988)
68 Peterson JJ, Rayburn HB, Lager DJ, Raife TJ, Kealey GP, Rosenberg RD, Lentz SR. Expression of thrombomodulin and consequences of thrombomodulin deficiency during healing of cutaneous wounds. Am. J. Pathol. 155:1569-75 (1999)
69 Pierce GF, Yanagihara D, Klopchin K, Danilenko DM, Hsu E, Kenney WC, Morris CF. Stimulation of all epithelial elements during skin regenetation by keratinocyte growth factor. J. Exp. Med. 179:831-40 (1994)
70 Pillai S, Bilke DD, Mancianti ML, Cline P, Hincenbergs M. Calcium regulation of growth and differentiation competence by stages of growth and extracellular calcium. J. Cell Physiol. 143:294-302 (1990)
71 Polgar J, Lerant I, Muszbek L, Machovich R. Thrombomodulin inhibits the activation of factor XIII by thrombin. Thromb. Res. 43:685-90 (1986)
72 Raife TJ, Lager DJ, Madison KC, Piette WW, Howard EJ, Sturm MT, Chen Y, Lentz SR. Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. J. Clin. Invest. 93:1846-51 (1994)
73 Raife TJ, Lager DJ, Peterson JJ, Erger RA, Lentz SR. Keratinocyte-specific expression of human thrombomodulin in transgenic mice : effects on epidermal differentiation and cutaneous wound healing. J. Investig. Med. 46:127-33 (1998)
74 Romer J, Bugge TH, Pyke C, Lund LR, Flick MJ, Degen JL, Dano K. Impaired wound healing in mice with a disrupted plasminogen gene. Nat. Med. 2:287-92 (1996)
75 Schenk-Braat EA, Morser J, Rijken DC. Identification of the epidermal growth factor-like domains of thrombomodulin essential for the acceleration of thrombin-mediated inactivation of single-chain urokinase-type plasminogen activator. Eur. J. Biochem. 268:5562-9 (2001)
76 Shirai T, Shiojiri S, Ito H, Yamamoto S, Kusumoto H, Deyashiki Y, Maruyama I, Suzuki K. Gene structure of human thrombomodulin, a cofactor for thrombin-catalyzed activation of protein C. J. Biochem. 103:281-5 (1988)
77 Suehiro T, Shimada M, Matsumata T, Taketomi A, Yamamoto K, and Sugimachi K. Thrombomodulin inhibits intrahepatic spread in human hepato-cellular carcinoma. Hepatology 21:1285-90 (1995)
78 Sandusky G, Berg DT, Richardson MA, Myers L, Grinnell BW. Modulation of thrombomodulin-dependent activation of human protein C through differential expression of endothelial Smads. J. Biol. Chem. 277:49815-9 ( 2002)
79 Tabata M, Sugihara K, Yonezawa S, Yamashita S, Maruyama I. An immunohistoshemical study of thrombomodulin in oral squamous cell carcinoma and its association with invasive and metastatic potential. J. Oral. Pathol. Med. 26:258-64 (1997)
80 Teasdale M, Bird C, Bird P. Internalization of the anticoagulant thrombomodulin is constitutive and does not require a signal in the cytoplasmic domain. Immunol. Cell Biol. 72:480-8 (1994)
81 Tezuka Y, Yonezawa S, Maruyama I, Matsushita Y, Shimizu T, Obama H, Sagara M, Shirao K, Kusano C, Natsugoe S. Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res. 55:4196-200 (1995)
82 Tomar RS, Matta H. Chaudhary PM. Use of adeno-associated viral vector for delivery of small interfering RNA. Oncogene 22:5712-5 (2003)
83 Tratschin JD, West MH, Sandbank T, Carter BJ. A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the prokaryotic gene for chloramphenicol acetyltaransferase. Mol. Cell. Biol. 4:2072-81 (1984)
84 Tuschl T. Expanding small RNA interference. Nat. Biotechnol. 20:446-8 (2002)
85 Walsh CE, Chao H. Parvovirus-mediated gene transfer for the haemophilias. Haemophilia. 8:60-7 (2002)
86 Wen DZ, Dittman WA, Ye RD, Deaven LL, Majerus PW, Sadler JE. Human thrombomodulin:complete cDNA sequence and chromosome localization of the gene. Biochemistry 26:4350-7 (1987)
87 Weiler-Guettler H, Aird WC, Rayburn H, Husain M, Rosenberg RD. Developmentally regulated gene expression of thrombomodulin in postimplantation mouse embryos. Development 122:2271-81 (1996)
88 Zushi M, Gomi K, Yamamoto S, Maruyama I, Hayashi T, Suzuki K. The last three consecutive epidermal growth factor-like structures of human thrombomodulin comprise the minimum functional domain for protein C-activating cofactor activity and anticoagulant activity. J. Biol. Chem. 264:10351-3 (1989)
89 Zhang Y, Weiler-Guettler H, Chen J, Wilhelm O, Deng Y, Qiu F, Nakagawa K, Klevesath M, Wilhelm S, Bohrer H, Nakagawa M, Graeff H, Martin E, Stern D, Rosenberg R, Ziegler R, Nawroth P. Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J. Clin. Invest. 101:1301-9 (1998)