簡易檢索 / 詳目顯示

研究生: 李昇峰
Li, Sheng-Feng
論文名稱: 聚丙烯腈奈米纖維薄膜於脂肪分解酵素固定化之應用
Electrospun Polyacrylonitrile Nanofibrous Membrane for Lipase Immobilization
指導教授: 吳文騰
Wu, Wen-Teng
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 121
中文關鍵詞: 水解酵素固定化脂肪分解酵素電紡織法
外文關鍵詞: hydrolysis, immobilization, electrospinning, lipase
相關次數: 點閱:103下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,利用電紡織法的方式製備出聚丙烯腈奈米纖維薄膜,作為脂肪分解酵素之固定化載體。於最佳電紡織操作條件下,成功地製備出纖維直徑約在150~300 nm並且結構均勻之聚丙烯腈奈米纖維薄膜。完成薄膜製備後,透過amidination reaction活化聚丙烯腈上的硝基官能基,與脂肪分解酵素上的胺基官能基形成共價鍵結,完成酵素固定化程序。由FTIR的結果可直接證明脂肪分解酵素成功地共價鍵結於聚丙烯腈奈米纖維薄膜之上。在活化時間為5分鐘、固定化時間為60分鐘、固定化溫度為30℃與固定化pH值為7.0的條件之下,所製備之固定化脂肪分解酵素具有較高的蛋白質固定量與較佳的酵素活性表現。製備之固定化脂肪分解酵素,其動力學參數Km值與Vmax值分別為0.55 mM與31.2 U/mg,與自由酵素所測得Km值(0.46 mM)與Vmax值(39.7 U/mg)相近,證實在固定化程序之後,脂肪分解酵素仍能保持其原有構形;與其他文獻研究結果相比,證明本研究所製備之固定化脂肪分解酵素有較為優異的表現。在穩定性測試方面,本研究所製備之固定化脂肪分解酵素在儲存20天後,仍保有起始活性的95%,且經過10次之批次反應後,其活性仍維持起始活性的70%左右,由此可證明本研究所製備之固定化脂肪分解酵素,具有儲存安定性佳與可重複使用等優點。應用於大豆油水解生產脂肪酸方面,本研究所製備之固定化脂肪分解酵素,在水解反應時間為10分鐘時可達到72%之水解轉化率;而水解反應時間為90分鐘時可達到85%之平衡轉化率。利用大豆油催化水解進行批次反應20次後,其轉化率仍能維持在起始轉化率的65%,證明本研究所製備之固定化脂肪分解酵素,其穩定性相當優異。以期藉由本研究所製備之固定化脂肪分解酵素,其水解速率快、儲存安定性佳以及重複使用性優異等優點,改善酵素製程應用於工業發展上成本過高的問題。

    Polyacrylonitrile (PAN) nanofibrous membrane with fiber diameter in the range of 150–300 nm could be manufactured by electrospinning, providing huge specific surface area for enzyme immobilization. Lipase from Candida rugosa was covalently immobilized onto the PAN nanofibrous membrane by amidination reaction. Aggregates of enzyme molecules were found on the nanofiber surface from field emission scanning electron microscopy. In addition, covalent bond formation between enzyme molecule and the nanofiber was confirmed from FTIR measurements. After lipase was immobilized onto the PAN nanofibrous membrane, the mechanical strength of the nanofibrous membrane was improved in doubly the tensile stress at break and Young’s modulus. Besides, the activity retention of the immobilized lipase was 87.5% of the free enzyme under optimal immobilization conditions. The kinetic parameters, Km and Vmax, of the immobilized lipase were determined to be 0.55 mM and 31.2 U/mg, respectively. The immobilized lipase retained over 95% of its initial activity, when stored in the buffer at 30℃ for 20 days, and still retained 70% of its initial activity after being reused 10 times.
    The effects of oil-to-water ratio, temperature, and pH on hydrolysis of soybean oil were investigated to determine the optimal oil hydrolysis conditions. Under the optimal hydrolysis reaction conditions, the hydrolysis conversion of soybean oil was 72% after 10 minutes and 85% after 90 minutes. In reusability examination, it still retained 65% of its initial conversion after being reused 20 times. These results imply that the proposed scheme for immobilization of lipase has the potential in industrial applications for oil hydrolysis.

    摘要......................................................I Abstract................................................III 誌謝......................................................V 目錄.....................................................VI 表目錄..................................................XII 圖目錄.................................................XIII 第一章 緒論.............................................1 1.1 前言.............................................1 1.2 研究動機與目標...................................2 第二章 文獻回顧.........................................6 2.1 酵素簡介.........................................6 2.2 脂肪分解酵素.....................................7 2.2.1 脂肪分解酵素的應用..................................7 2.2.2 脂肪分解酵素的種類.................................11 2.2.3 脂肪分解酵素之結構與活化現象.......................12 2.2.4 脂肪分解酵素之水解機制.............................15 2.3 酵素固定化......................................18 2.3.1 酵素固定化之定義...................................19 2.3.2 酵素固定化的影響參數...............................20 2.3.3 固定化載體的選擇...................................21 2.3.4 固定化的方法 .......................................22 2.3.4.1 傳統固定化技術...................................22 2.3.4.2 Amidination reaction.............................27 2.3.5 固定化載體的形態...................................28 2.3.6 薄膜應用與製備.....................................28 2.3.7 電紡織法...........................................30 第三章 實驗材料與方法..................................32 3.1 實驗材料與儀器..................................32 3.1.1 實驗材料........................................32 3.1.2 實驗設備與儀器..................................34 3.2 實驗方法........................................36 3.2.1 聚丙烯腈奈米纖維薄膜之製備......................36 3.2.2 酵素之選擇......................................38 3.2.3 固定化載體之活化................................38 3.2.4 脂肪分解酵素之固定化............................41 3.2.5 脂肪分解酵素之活性分析..........................41 3.2.6 蛋白質定量分析..................................43 3.2.7 酵素反應動力學分析..............................44 3.2.8 固定化脂肪分解酵素水解大豆油之實驗操作.............45 3.2.9 固定化脂肪分解酵素水解轉化率之分析..............47 第四章 均勻結構之聚丙烯腈奈米纖維薄膜..................49 4.1 前言............................................49 4.2 實驗結果與討論..................................50 4.2.1 高分子溶液濃度對奈米纖維結構之影響..............50 4.2.2 電場強度對奈米纖維結構之影響....................53 4.2.3 電場距離對奈米纖維結構之影響....................56 4.2.4 高分子溶液流速對奈米纖維結構之影響..............59 4.3 結論............................................61 第五章 固定化酵素最佳活性表現..........................62 5.1 前言............................................62 5.2 實驗結果與討論..................................62 5.2.1 活化時間對酵素固定化之影響......................62 5.2.2 固定化脂肪分解酵素之物理性質....................68 5.2.2.1 固定化脂肪分解酵素之表面官能基分析...............68 5.2.2.2 固定化脂肪分解酵素之親疏水性分析.................70 5.2.2.3 固定化脂肪分解酵素之機械性質測試.................72 5.2.3 固定化時間對酵素固定化之影響....................75 5.2.4 固定化溫度對酵素固定化之影響....................77 5.2.5 固定化pH值對酵素固定化之影響....................79 5.2.6 反應溫度對酵素固定化之影響......................81 5.2.7 反應pH值對酵素固定化之影響......................83 5.2.8 固定化脂肪分解酵素之效能分析....................85 5.2.9 固定化脂肪分解酵素之儲存安定性..................89 5.2.10 固定化脂肪分解酵素之重複使用性..................91 5.3 結論............................................93 第六章 固定化酵素於大豆油水解之應用....................95 6.1 前言............................................95 6.2 實驗結果與討論..................................95 6.2.1 固定化脂肪分解酵素之水解時間曲線................95 6.2.2 油水比例對大豆油水解轉化率之影響................97 6.2.3 水解反應溫度對大豆油水解轉化率之影響............99 6.2.4 水解反應pH值對大豆油水解轉化率之影響...........101 6.2.5 固定化脂肪分解酵素水解大豆油之重複使用性.......103 6.3 結論...........................................105 第七章 總結與未來展望.................................106 7.1 總結...........................................106 7.2 未來展望............................................109 參考文獻................................................110 個人簡歷................................................118

    Berufeld, P. and Wan, J., “Antigens and enzymes made insoluble by entrapping them into lattices of synthetic polymers”, Science, 142, 678-679 (1963).
    Bradford, M.M.A., “A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding”, Analytical Biochemistry, 72, 248-54 (1976).
    Brozozowski, A.M., Derewenda, U., Dererwenda, Z.S., Dodson, G.G., Lawson, D.M., Turkenburg, J.P., Blorkling, F., Huge-Jensen, B., Patkar, S.A. and Thim, L., “A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex”, Nature, 351, 491-495 (1991).
    Buchko, C.J., Chen, L.C., Shen, Y. and Martin, D.C., “Processing and microstructural characterization of porous biocompatible protein polymer thin films”, Polymer, 40, 7397-7407 (1999).
    Chang, T.M.S., “Semipermeable microcapsules”, Science, 146, 524-525 (1964).
    Chiou, S.H. and Wu, W.T., “Immobilization of Candida rugosa lipase on chitosan with activation of the hydroxyl groups”, Biomaterials, 25, 197-204 (2004).
    Colombie, S., Tweddell, R.J., Condoret, J.S. and Marty, A., “Water activity control: a way to improve the efficiency of continuous lipase esterification”, Biotechnology and Bioengineering, 60, 362-368 (1998).
    Deitzel, J.M., Kleinmeyer, J.D., Harris, D. and Tan, N.C.B., “The effect of processing variables on the morphology of electrospun nanofibers and textiles”, Polymer, 42, 261-272 (2001).
    Demir, M.M., Yilgor, I., Yilgor, E. and Erman, B., “Electrospinning of polyurethane fibers”, Polymer, 43, 3303-3309 (2002).
    Fong, H., Chun, I. and Reneker, D.H., “Beaded nanofibers formed during electrospinning”, Polymer, 40, 4585-4592 (1999).
    Formhals, A., “Process and apparatus for preparing artificial threads”, US Patent, 1,975,504 (1934).
    Goldstein, L., Levin, Y. and Katchalski, E., “A water-insoluble polyanionic derivative of trypsin II. effect of the polyelectrolyte carrier on the kinetic behavior of the bound trypsin”, Biochemistry, 3, 1913-1919 (1964).
    Grubhofer, N. and Scheith, L., “Modifizierte ionenaustauscher als spezifische adsorbentien”, Naturwissenschaften, 40, 508 (1953).
    Handa, T., Hirose, A., Yoshida, S. and Tsuchiya, H., “The effect of methylacrylate on the activity of glucoamylase immobilized on granular polyacrylonitrile”, Biotechnology and Bioengineering, 24, 1639-1652 (1982).
    Handa, T., Hirose, A., Akino, T., Watanabe, K. and Tsuchiya, H., “Preparation of immobilized -Amylase covalently attached to granular polyacrylonitrile”, Biotechnology and Bioengineering, 25, 2957-2967 (1983).
    Holcapek, M., Jandera, P., Fisher, J. and Prokes, B., “Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods”, Journal of Chromatography A, 858, 13-31 (1999).
    Huang, X.J., Xu, Z.K., Wan, L.S., Innocent, C. and Seta, P., “Electrospun nanofibers modified with phospholipid moieties for enzyme immobilization”, Macromolecular Rapid Communications, 27, 1341-1345 (2006).
    Huang, Z.M., Zhang, Y.Z., Ramakrishna, S. and Lim, C.T., “Electrospinning and mechanical characterization of geltin nanofibers”, Journal of Polymer Science, 45, 5361-5368 (2004).
    Hung, T.C., Giridhar, R., Chiou, S.H. and Wu, W.T., “Binary immobilization of Candida rugosa lipase on chitosan”, Journal of Molecular Catalysis B: Enzymatic, 26, 69-78 (2003).
    Jaeger, K.E. and Reetz, M.T., “Microbial lipases form versatile tools for biotechnology”, Trends in Biotechnology, 16, 396-403 (1998).
    Jarusuwannapoom, T., Hongrojjanawiwat, W., Jitjaicham, S., Wannatong, L., Nithitanakul, M., Pattamaprom, C., Koombhongse, P., Rangkupan, R. and Supaphol, P., “Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers”, European Polymer Journal, 41, 409-421 (2005).
    Kazlauskas, R.J., “Elucidation structure-mechanism relationships in lipases: porspects for prediction and engineering catalytic properties”, Trends in Biotechnology, 12, 464-472 (1994).
    Knezevic, Z., Bobic, S., Milutinovic, A., Obradovic, B., Mojovic, L. and Bugarski, B., “Alginate-immobilized lipase by electrostatic extrusion for the purpose of palm oil hydrolysis in lecithin/isooctane system”, Process Biochemistry, 38, 313-318 (2002).
    Lee, J.S., Choi, K.H., Ghim, H.D., Kim, S.S., Chun, D.H., Kim, H.Y. and Lyoo, W.S., “Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning”, Journal of Applied Polymer Science, 93, 1638-1646 (2004).
    Liu, X., Guan, Y., Shen, R. and Liu, H., “Immobilization of lipase onto micro-size magnetic beads”, Journal of Chromatography B, 822, 91-97 (2005).
    Lotrakul, P. and Dharmsthiti, S., “Lipase production by aeromonas sobria LP004 in a medium containing whey and soybean meal”, World Journal of Microbiology & Biotechnology, 13, 163-166 (1997).
    Mateo, C., Palomo, J.M., Gloria, F.L., Guisan, J.M. and Roberto, F.L., “Improvement of enzyme activity, stability and selectivity via immobilization techniques”, Enzyme and Microbial Technology, 40, 1451-1463 (2007).
    Megelski, S., Stephens, J.S., Chase, D.B. and Rabolt, J.F., “Micro- and nanostructured surface morphology on electrospun polymer fibers”, Macromolecules, 35, 8456-8466, (2002)
    Mit-uppatham, C., Nithitanakul, M. and Supaphol, P., “Ultrafine electrospun polyamide-6 fibers: effect of solution conditions on morphology and average fiber diameter”, Macromolecular Chemistry and Physics, 205, 2327-2338 (2004).
    Mitz, M.A., “New insoluble active derivative of an enzyme as a model for study of cellular metabolism”, Science, 123, 1076-1077 (1956).
    Murray, M., Rooney, D., Neikerk M.V., Monyenegro A. and Weatherley, L.R., “Immobilization of lipase onto lipophilic polymer particles and application to oil hydrolysis”, Process Biochemistry, 32, 479-486 (1997).
    Nelson, J.M. and Griffin, E.G., “Adsorption of invertase”, Journal of the American Chemical Society, 38, 1109-1115 (1916).
    Pencreac’h, G. and Baratti, J.C., “Comparison of hydrolytic activity in water and heptane for thirty-two commercial lipase preparations”, Enzyme and Microbial Technology, 28, 473-479 (2001).
    Reneker, D.H., Yarin, A.L., Fong, H. and Koombhongse, S., “Bending instability of electrically charged liquid jets of polymer solutions in electrospinning”, Journal of Applied Physics, 87, 4531-4547 (2000).
    Shaw, J.F., Chang, R.C., Wang, F.F. and Wang Y.J., “Lipolytic activities of a lipase immobilized on six selected supporting materials”, Biotechnology and Bioengineering, 35, 132-137 (1990).
    Shenoy, S.L., Bates, W.D., Frisch, H.L. and Wnek, G.E., “Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit”, Polymer, 46, 3372-3384 (2005).
    Tan, T, Chen, B. Q. and Ye, H., “Enzymatic synthesis of 2-ethylhexyl palmitate by lipase immobilized on fabric membranes in the batch reactor”, Biochemical Engineering Journal, 29, 41–45 (2007).
    Ting, W.J., Tung, K.Y., Giridhar, R. and Wu, W.T., “Application of binary immobilized Candida rugosa lipase for hydrolysis of soybean oil”, Journal of Molecular Catalysis B: Enzymatic, 42, 32-38 (2006).
    Verger, R., Mieras, M.C.E., and Hass, G.H., “Action of phospholipase A at interfaces”, The Journal of Biological Chemistry, 248, 4023-4034 (1973).
    Wang, Z.G., Wang, J.Q. and Xu, Z.K., “Immobilization of lipase from Candida rugosa on electrospun polysulfone nanofibrous membranes by adsorption,” Journal of Molecular Catalysis B: Enzymatic, 42, 45-51 (2006).
    Yajima, H., Hirose, A., Ishii, T., Ohsawa, T. and Endo, R., “Immobilization of glucoamylase onto afternative acryfonitrife-butadne copolymer by amidination reaction”, Biotechnology and Bioengineering, 33, 795-798 (1989).
    Yan, H. and Nagahama, K., “Activity of free Candida rugosa lipase in hydrolysis reaction of tuna oil under high pressure carbon dioxide”, Journal of Chemical Engineering of Japan, 36, 557-562 (2003).
    Ye, P., Xu, Z.K., Wu, J., Innocent, C. and Seta, P., “Nanofibrous membranes containing reative groups: electrospinning from poly (acrylonitrile-co-maleic acid) for lipase immobilization”, Marcomolecules 39, 1041-1045 (2006)*.
    Ye, P., Xu, Z.K., Wu, J., Innocent, C. and Seta, P., “Nanofibrous poly(acrylonitrile-co-maleic acid) membranes functionalized with gelatin and chitosan for lipase immobilization”, Biomaterials, 27, 4169-4176 (2006)**.
    Zhang, W.X., Wang, Y.Z. and Sun, C.F., “Characterization on oxidative stabilization of polyacrylonitrile nanofibers prepared by electrospinning”, Journal of Polymer Research, 14, 467-474 (2007).
    Zhao, S.L., Wu, X.H., Wang, L.G. and Huang, Y., “Electrospinning of ethyl-cyanoethyl cellulose/tetrahydrofuran solutions”, Journal of Applied Polymer Science, 91, 242-246 (2004).
    Zhong, X.H., Kim, K.S., Fang, D.F., Ran, S.F., Hsiao, B.S. and Chu, B., “Structure and process relationship of electrospun bioabsorbable nanofiber membranes”, Polymer, 43, 4403-4412 (2002).
    田蔚城,「生物技術的發展與應用」,九州圖書文物有限公司,臺灣,1997。
    洪佃玠,「利用幾丁聚醣固定脂肪分解酵素之研究」,碩士論文,清華大學,臺灣新竹 (2002)。
    陳國誠,「生物固定化技術與產業應用」,茂昌圖書有限公司,臺灣,1990。

    下載圖示 校內:2011-05-18公開
    校外:2014-05-18公開
    QR CODE