| 研究生: |
劉璟霈 Liu, Jing-Pei |
|---|---|
| 論文名稱: |
蝴蝶蘭受軟腐菌感染所誘發防禦反應與基因表現之研究 Characterization of pathogen-responsive genes involved in compatible interaction between orchid and Erwinia chrysanthemi |
| 指導教授: |
黃浩仁
Huang, Hao-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 病毒誘導基因靜默法 、軟腐菌 、蝴蝶蘭 |
| 外文關鍵詞: | Erwinia chrysanthemi, orchids, virus-induced gene silencing |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當植物遭受到病原菌攻擊時,會啟動相關的防禦機制阻止病菌的入侵,例如刺激植株產生過氧化物(reactive oxygen species, ROS)。多數植株在感染的初期可以有效阻止病菌入侵,一旦植株無法阻擋病菌快速擴散,即會造成植株的死亡。軟腐病菌(Erwinia chrysanthemi)是目前台灣蘭園中常見的細菌性病原菌易造成蘭園大規模的感染,本篇研究主要探討蝴蝶蘭與軟腐菌之間的交互關係。首先藉由比較植株在感染後基因表現的差異,找出參與在此過程中的基因,先期的實驗已利用抑制性扣減雜交法(suppression
subtractive hybridization, SSH)找出感染軟腐菌24小時後所誘發的蝴蝶蘭基因並依據其功能分為八群。其中轉錄因子PabZIP與PaWRKY在目前的研究已知與植物抗病以及逆境有關,由於轉錄因子可調控其他基因之表現,因此研究轉錄因子基因功能有助於了解抗病機制;除了已知與防禦以及逆境相關的基因外, 在SSH 分析可以發現參與長鏈脂肪碳合成的酵素trans-2-enoyl-CoA-reductase(ECR)基因表現在感染軟腐菌時會被誘導,而該基因在之前的研究並未發現與抗病有關。為了進一步了解蝴蝶蘭與軟腐菌的交互關係,因此選擇分析PabZIP、PaWRKY、與PaECR基因功能以及在此過程中所扮演的角色。首先以RT-PCR確認利用確認基因表現,發現上述基因在感染後六小時表現量都會上升,且於感染後二十四小時仍持續表現。為了解PabZIP、PaERKY、與PaECR是否與植株的抗病能力相關,因此利用病毒誘導基因靜默法(virus-induced gene silencing, VIGS)抑制蝴蝶蘭內生性基因的表現,發現若抑制PaECR表現將導致植株抗病降低。因此,藉由分析SSH資料庫內基因表現以及利用病毒誘導基因靜默法可幫助了解基因在植株抗病時的功能,透過更多基因的分析有助於在分子層次上了解蝴蝶蘭感染軟腐菌的關係,或許不久即可培育出具有抗病力的植株。
Plants respond to pathogen attack by activating arrays of inducible defense mechanisms.
A previous study using suppression subtractive hybridization (SSH) strategy was
applied in search for genes that were induced after infection of Phalaenopsis
orchids by a bacterial pathogen, Erwinia chrysanthemi. As a result, a pool of 73 unique
mRNA transcripts form Erwinia-infected orchids exhibited different expression profiles
when compared to healthy plants. Among these, two candidate genes showed early
responsiveness to Erwinia infection and were subsequently selected for functional
analysis in this study. The first one is a enoyl-CoA reductase gene (PaECR), which
encodes a enzyme that catalyzes the last step of very-long-chain fatty acids elongation.
The other is a gene encoding a putative basic-leucine zipper transcription factor, termed
PabZIP. Semiquantative RT-PCR analysis of gene expression showed that the
steady-state level of the PaECR transcripts increased 6 hours (hrs) post-inoculation and
remained elevated through 24 hrs. Furthermore, the gene expression of PabZIP was
induced at 6 hrs after challenge with Erwinia. These genes were both strongly induced
by Erwinia infection, confirming the SSH-based results. To understand the function of
PaECR and PabZIP genes in orchid plants, loss-of-function study was performed by
virus-induced gene silencing (VIGS) of the PaECR and PabZIP gene, respectively.
Interestingly, the results indicated that silencing of PaECR in orchid plants enhanced
the susceptibility to Erwinia. In summary, the study suggests that PaECR may play
important roles in resistance to Erwinia. Further characterization and functional analysis
of these genes will gain more insight into the molecular mechanisms underlying
orchid-Erwinia interactions, which may lead to improvement of orchid agriculture.
黃德昌、李慧玲、周雅惠、呂瑛敏(1998) 蝴蝶蘭軟腐病化學防治及其病原細菌之
抗藥性。植物會刊7:216 (摘要)
吳秋萍(2006) 蝴蝶蘭逆境之生理及分子層次特性分析。國立成功大學生命科學研
究所碩士論文。
高天文(2004) 蝴蝶蘭中逆境相關訊息傳遞基因之選殖與特性分析。國立成功大學
生命科學研究所碩士論文。
陳盈汝(2007) 蝴蝶蘭受軟腐菌感染之基因表現探討。國立成功大學生命科學研究
所碩士論文。
Alscher RG (2002) Role of superoxide dismutases (SODs) in controlling oxidative
stress in plants. J. Exp. Bot 372: 1331-1341
Amari K, Díaz-Vivancos P, Pallás V, Sánchez-Pina MA and Hernández JA (2007)
Oxidative stress induction by Prunus necrotic ringspot virus infection in apricot seeds.
Physiol Plant. 2: 302-310
Baker CJ and Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev
Phytopathol. 33: 299-321
Baulcombe D (2001) RNA silencing. Diced defence. Nature6818: 295-296
Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H and Dunn T (1998)
The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine
reductase is identified in a screen for temperature-sensitive suppressors of the
Ca2+-sensitive csg2Delta mutant. J Biol Chem. 46: 30688-30694
Berger S, Papadopoulos M, Schreiber U, Kaiser W and Roitsch T (2004) Complex
regulation of gene expression, photosynthesis and sugar levels by pathogen infection in
tomato. Physiologia Plantarum 4: 419-428
Bogacki P, Oldach KH and Williams KJ (2008) Expression profiling and mapping of
defence response genes associated with the barley- Pyrenophora teres incompatible
interaction. Mol Plant Pathol. 5: 645-660
Brandt J, Thordal-Christensen H, Vad K, Gregersen PL and Collinge DB (1992) A
pathogen-induced gene of barley encodes a protein showing high similarity to a protein
kinase regulator. Plant J. 2: 815–820
Brodersen P, Petersen M, Pike H.M, Olszak B, Skov S, Odum N, Jorgensen LB,
Brown RE and Mundy J (2002) Knockout of Arabidopsis
ACCELERATED-CELL-DEATH11 encoding a sphingosin transfer protein causes
activation of programmed cell death and defense. Genes Dev. 16: 490–502
Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F,
Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps
JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T,
Dangl JL, Wang X and Zhu T (2002) Expression profile matrix of Arabidopsis
transcription factor genes suggests their putative functions in response to environmental
stresses. Plant Cell 3: 559-574
Cinti DL, Cook L, Nagi MN and Suneja SK (1992) The fatty acid chain elongation
system of mammalian endoplasmic reticulum. Prog Lipid Res. 1: 1-51
Collmer A and Keen NT (1986) The Role of Pectic Enzymes in Plant Pathogenesis.
Annu.l Rev. Phytopathol. 24: 383-409
Cother EJ and Gilbert RL (1990) Presence of Erwinia chrysanthemi in two major river
systems and their alpine sources in Australia. J. Appl. Bacteriol. 69: 629-738
Doke N (1983) Involvement of superoxide anion generation in the hypersensitive
response of potato tuber tissues to infection with an incompatible race of Phytophthora
infestans and to the hyphal wall components. Physiol. Plant Pathol. 23: 345–357
Dong J, Chen C and Chen Z (2003) Expression profiles of the Arabidopsis
WRKY gene superfamily during plant defense response. Plant Mol Biol. 1: 21-37
Dunn T (2001) Tsc13p is required for fatty acid elongation and localizes to a novel
structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol Cell Biol. 1:
109-25
Eric L (2001) Programmed cell death, mitochondria and the plant hypersensitive
response. Nature 411: 848-853
Fagard M, Dellagi A, Roux C, Périno C, Rigault M, Boucher V, Shevchik VE and
Expert D (2007) Arabidopsis thaliana expresses multiple lines of defense to
counterattack Erwinia chrysanthemi. Mol Plant Microbe Interact. 7: 794-805
Gable K, Garton S, Napier JA and Dunn TM (2004). Functional characterisation of
the Arabidopsis thaliana ortholog of Tsc13p, the enoyl reductase of the yeast microsomal
fatty acid elongating system. J. Exp. Bot. 55: 543–545
Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI,
Schuch W and Hetherington AM (2000) The HIC signalling pathway links CO2
perception to stomatal development. Nature 408: 713-716
Hamilton AJ and Baulcombe DC (1999) A species of small antisense RNA in
posttranscriptional gene silencing in plants. Science 5441: 950-952
Hammerschmidt R (1999) PHYTOALEXINS: What have we learned after 60 years?
Annu. Rev. Phytopathol. 37: 285-306
Hammond-Kosack KE and Jones JDJ (1996) Resistance gene-dependent plantdefense responses. Plant Cell 8: 1773–1791
Haygood RA, Strider DL and Echandi E (1982) Survival of Erwinia chrysanthemi in
association with Philodendron selloum, other greenhouse ornamentals, and in potting
media. Phytopathology 72: 853-859
Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant
Biol. 4:315-319
Hiraga S, Sasaki K, Ito H, Ohashi Y and Matsui H (2001) A large family of class III
plant peroxidases. Plant Cell Physiol. 5: 462-468
Jakoby M,Weisshaar B, Dröge-LaserW, Vicente-Carbajosa J, Tiedemann J, Kroj T,
Parcy F and bZIP Research Group (2002) bZIP transcription factors in Arabidopsis.
Trends Plant Sci. 3: 106-111
Kohlwein SD, Eder S, Oh CS, Martin CE, Gable K, Bacikova D and Lamb C and
Dixon RA (1997) The oxidative burst in plant disease resistance. Annual Review of Plant
Physiology and Plant Molecular Biology 48: 251-275
Kunst L and Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax.
Prog Lipid Res. 1: 51-80
Lamb C and Dixon RA (1997) The oxidative burst in plant disease resistance. Annu.
Rev. Plant Physiol. Plant Mol. Biol. 48: 251–275
Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat. Rev.
Immunol. 4: 181–189
Liang H, Yao N, Song JT, Luo S, Lu H and Greenberg JT (2003) Ceramides
modulate programmed cell death in plants .Genes Dev.17: 2636–2641
Li J, Brader G and Palva ET (2004) The WRKY70 transcription factor: a node ofconvergence for jasmonate-mediated and salicylate-mediated signals in plant defense.
Plant Cell 2: 319-331
Lu HC, Chen HH, Tsai WC, Chen WH, Su HJ, Chang DC and Yeh HH (2007)
Strategies for functional validation of genes involved in reproductive stages of orchids.
Plant Physiol. 2: 558-569
Millar DJ, Whitelegge JP, Bindschedler LV, Rayon C, Boudet AM, Rossignol M,
Borderies G and Bolwell GP (2009) The cell wall and secretory proteome of a tobacco
cell line synthesising secondary wall. Proteomics 9: 2355-2372
Montgomery MK and Fire A (1998) Double-stranded RNA as a mediator in
sequence-specific genetic silencing and co-suppression. Trends Genet. 7: 255-263
Moon YA and Horton JD (2003) Identification of two mammalian reductases involved
in the two-carbon fatty acyl elongation cascade. J Biol Chem. 9: 7335-7343
Morel JB and Dangl JL (1997) The hypersensitive response and the induction of cell
death in plants. Cell Death Differ. 8: 671-683
Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a Chimeric Chalcone
Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes
in trans. Plant Cell 4: 279-289
Ohlrogge J and Browse J (1995) Lipid biosynthesis. Plant Cell 7: 957-970
Okinaka Y, Yang CH, Perna NT and Keen NT (2002) Microarray profiling of Erwinia
chrysanthemi 3937 genes that are regulated during plant infection. Mol Plant Microbe
Interact. 7: 619-629
Palma K, Zhang Y and Li X (2005) An importin alpha homolog, MOS6, plays an
important role in plant innate immunity. Curr Biol. 12: 1129-1135
Park JA, Kim TW, Kim SK, Kim WT and Pai HS (2005) Silencing of NbECR
encoding a putative enoyl-CoA reductase results in disorganized membrane structures
and epidermal cell ablation in Nicotiana benthamiana. FEBS Lett. 20: 4459-4464
Poulos A (1995) Very long chain fatty acids in higher animals. Lipids 1: 1-14
Pruitt RE, Vielle-Calzada JP, Ploense SE, Grossniklaus U and Lolle SJ (2000)
FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis,
encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci U S A. 3: 1311-1316
Ratcliff F, Harrison BD and Baulcombe DC (1997 ) A similarity between viral defense
and gene silencing in plants. Science 5318: 1558-1560
Ratcliff F, Martin-Hernandez AM and Baulcombe DC (2001) Technical Advance.
Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 2:
237-245
Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda
O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ,
Ghandehari D, Sherman BK and Yu G (2000) Arabidopsis transcription factors:
genome-wide comparative analysis among eukaryotes. Science 5499: 2105-2110
Roberts MR (2003) 14-3-3 proteins find new partners in plant cell signalling. Trends
Plant Sci. 5: 218-223
Salin ML (1988) Toxic oxygen species and protective systems of the chloroplast.
Physiologia Plantarum 72: 681–689
Sepulchre JA, Reverchon S and Nasser W (2007) Modeling the onset of virulence in a
pectinolytic bacterium. J Theor Biol. 2: 239-257
Shah J (2005) Lipids, lipases, and lipid-modifying enzymes in plant disease resistance.
Annu Rev Phytopathol. 43: 229-260
Shinozaki K and Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration
and low temperature: differences and cross-talk between two stress signaling pathways.
Curr Opin Plant Biol. 3: 217-223
Stanghellini ME (1982) Soft-rotting bacteria in the rhizosphere. Pages 249-261 in:
Phytopathogenic Prokaryotes, Vol. 1. M. Mount and G..
Todd J, Post-Beittenmiller D and Jaworski JG (1999) KCS1 encodes a fatty acid
elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana.
Plant J. 2: 119-130
Torres MA, Jones JD and Dangl JL (2006) Reactive Oxygen Species Signaling in
Response to Pathogens. Plant Physiology 2: 373-378
Williams LE, Lemoine R and Sauer N (2000) Sugar transporters in higher plants--a
diversity of roles and complex regulation. Trends Plant Sci. 7: 283-290
Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K and Saedler H (1999)
Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between
adhesion response and cell differentiation in the epidermis. Plant Cell11: 2187-2201
Zheng H, Rowland O and Kunst L (2005) Disruptions of the Arabidopsis Enoyl-CoA
reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell
expansion during plant morphogenesis. Plant Cell 5: 1467-1481
Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J and Klessig DF (2000) NPR1
differentially interacts with members of the TGA/OBF family of transcription factors
that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant
Microbe Interact. 2: 191-202