簡易檢索 / 詳目顯示

研究生: 劉璟霈
Liu, Jing-Pei
論文名稱: 蝴蝶蘭受軟腐菌感染所誘發防禦反應與基因表現之研究
Characterization of pathogen-responsive genes involved in compatible interaction between orchid and Erwinia chrysanthemi
指導教授: 黃浩仁
Huang, Hao-Jen
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生命科學系
Department of Life Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 57
中文關鍵詞: 病毒誘導基因靜默法軟腐菌蝴蝶蘭
外文關鍵詞: Erwinia chrysanthemi, orchids, virus-induced gene silencing
相關次數: 點閱:82下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當植物遭受到病原菌攻擊時,會啟動相關的防禦機制阻止病菌的入侵,例如刺激植株產生過氧化物(reactive oxygen species, ROS)。多數植株在感染的初期可以有效阻止病菌入侵,一旦植株無法阻擋病菌快速擴散,即會造成植株的死亡。軟腐病菌(Erwinia chrysanthemi)是目前台灣蘭園中常見的細菌性病原菌易造成蘭園大規模的感染,本篇研究主要探討蝴蝶蘭與軟腐菌之間的交互關係。首先藉由比較植株在感染後基因表現的差異,找出參與在此過程中的基因,先期的實驗已利用抑制性扣減雜交法(suppression
    subtractive hybridization, SSH)找出感染軟腐菌24小時後所誘發的蝴蝶蘭基因並依據其功能分為八群。其中轉錄因子PabZIP與PaWRKY在目前的研究已知與植物抗病以及逆境有關,由於轉錄因子可調控其他基因之表現,因此研究轉錄因子基因功能有助於了解抗病機制;除了已知與防禦以及逆境相關的基因外, 在SSH 分析可以發現參與長鏈脂肪碳合成的酵素trans-2-enoyl-CoA-reductase(ECR)基因表現在感染軟腐菌時會被誘導,而該基因在之前的研究並未發現與抗病有關。為了進一步了解蝴蝶蘭與軟腐菌的交互關係,因此選擇分析PabZIP、PaWRKY、與PaECR基因功能以及在此過程中所扮演的角色。首先以RT-PCR確認利用確認基因表現,發現上述基因在感染後六小時表現量都會上升,且於感染後二十四小時仍持續表現。為了解PabZIP、PaERKY、與PaECR是否與植株的抗病能力相關,因此利用病毒誘導基因靜默法(virus-induced gene silencing, VIGS)抑制蝴蝶蘭內生性基因的表現,發現若抑制PaECR表現將導致植株抗病降低。因此,藉由分析SSH資料庫內基因表現以及利用病毒誘導基因靜默法可幫助了解基因在植株抗病時的功能,透過更多基因的分析有助於在分子層次上了解蝴蝶蘭感染軟腐菌的關係,或許不久即可培育出具有抗病力的植株。

    Plants respond to pathogen attack by activating arrays of inducible defense mechanisms.
    A previous study using suppression subtractive hybridization (SSH) strategy was
    applied in search for genes that were induced after infection of Phalaenopsis
    orchids by a bacterial pathogen, Erwinia chrysanthemi. As a result, a pool of 73 unique
    mRNA transcripts form Erwinia-infected orchids exhibited different expression profiles
    when compared to healthy plants. Among these, two candidate genes showed early
    responsiveness to Erwinia infection and were subsequently selected for functional
    analysis in this study. The first one is a enoyl-CoA reductase gene (PaECR), which
    encodes a enzyme that catalyzes the last step of very-long-chain fatty acids elongation.
    The other is a gene encoding a putative basic-leucine zipper transcription factor, termed
    PabZIP. Semiquantative RT-PCR analysis of gene expression showed that the
    steady-state level of the PaECR transcripts increased 6 hours (hrs) post-inoculation and
    remained elevated through 24 hrs. Furthermore, the gene expression of PabZIP was
    induced at 6 hrs after challenge with Erwinia. These genes were both strongly induced
    by Erwinia infection, confirming the SSH-based results. To understand the function of
    PaECR and PabZIP genes in orchid plants, loss-of-function study was performed by
    virus-induced gene silencing (VIGS) of the PaECR and PabZIP gene, respectively.
    Interestingly, the results indicated that silencing of PaECR in orchid plants enhanced
    the susceptibility to Erwinia. In summary, the study suggests that PaECR may play
    important roles in resistance to Erwinia. Further characterization and functional analysis
    of these genes will gain more insight into the molecular mechanisms underlying
    orchid-Erwinia interactions, which may lead to improvement of orchid agriculture.

    中文摘要………………………………………………………………………………i 英文摘要…………………………………………………………………………… ii 誌謝…………………………………………………………………………………iii 目錄………………………………………………………………………………… iv 圖目錄……………………………………………………………………………… vi 縮寫對照表…………………………………………………………………………vii 一、前言………………………………………………………………………………1 1. 植物的防禦機制………………………………………………………………… 1 2. 軟腐菌……………………………………………………………………… 3 3. 過氧化物………………………………………………………………………… 3 4. 病毒誘導基因靜默……………………………………………………………… 4 5. 轉錄因子………………………………………………………………………… 6 6. 超長鍊脂肪碳…………………………………………………………………… 7 7. 研究目的………………………………………………………………………… 8 二、材料與方法…………………………………………………………………… 10 1. 植株培植……………………………………………………………………… 10 2. 蝴蝶蘭之組織特異性取材及逆境處理……………………………………… 10 3. 抗氧化酵素分析……………………………………………………………… 11 4. 組織內過氧化物測定………………………………………………………… 12 5. 蝴蝶蘭植株病毒檢測………………………………………………………… 12 6. 目標基因表現量……………………………………………………………… 14 7. 病毒載體的構築……………………………………………………………… 16 8. 生物體外轉錄作用與病毒載體的感染……………………………………… 20 9. 確認病毒載體已轉殖入植物細胞…………………………………………… 22 v 10. 蝴蝶蘭抗病能力檢測與基因靜默之效果………………………………… 22 11. 阿拉伯芥AtECR 基因表現量……………………………………………… 22 12. 確認阿拉伯芥轉殖植株與抗病能力檢測………………………………… 23 三、結果………………………………………………………………………… 24 1. 蝴蝶蘭感染軟腐菌後SOD與POD酵素之表現………………………………… 24 2. 蝴蝶蘭PaECR、PaWRKYP與PabZIP受軟腐菌感染後基因表現分析…… 25 3. 蝴蝶蘭(TS97)無病毒植株篩選……………………………………………… 25 4. 病毒誘導基因靜默載體的構築……………………………………………… 26 5. VIGS誘導PaECR與PabZIP基因表現量下降效果評估與植株防禦能力…… 26 6. PaECR基因組織特異性表現分析……………………………………………… 27 7. PaECR基因轉殖至阿拉伯芥模式植物……………………………………… 27 四、討論…………………………………………………………………………… 28 五、參考文獻……………………………………………………………………… 33 六、結果圖………………………………………………………………………… 40 七、附錄…………………………………………………………………………… 52

    黃德昌、李慧玲、周雅惠、呂瑛敏(1998) 蝴蝶蘭軟腐病化學防治及其病原細菌之
    抗藥性。植物會刊7:216 (摘要)
    吳秋萍(2006) 蝴蝶蘭逆境之生理及分子層次特性分析。國立成功大學生命科學研
    究所碩士論文。
    高天文(2004) 蝴蝶蘭中逆境相關訊息傳遞基因之選殖與特性分析。國立成功大學
    生命科學研究所碩士論文。
    陳盈汝(2007) 蝴蝶蘭受軟腐菌感染之基因表現探討。國立成功大學生命科學研究
    所碩士論文。
    Alscher RG (2002) Role of superoxide dismutases (SODs) in controlling oxidative
    stress in plants. J. Exp. Bot 372: 1331-1341
    Amari K, Díaz-Vivancos P, Pallás V, Sánchez-Pina MA and Hernández JA (2007)
    Oxidative stress induction by Prunus necrotic ringspot virus infection in apricot seeds.
    Physiol Plant. 2: 302-310
    Baker CJ and Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev
    Phytopathol. 33: 299-321
    Baulcombe D (2001) RNA silencing. Diced defence. Nature6818: 295-296
    Beeler T, Bacikova D, Gable K, Hopkins L, Johnson C, Slife H and Dunn T (1998)
    The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine
    reductase is identified in a screen for temperature-sensitive suppressors of the
    Ca2+-sensitive csg2Delta mutant. J Biol Chem. 46: 30688-30694
    Berger S, Papadopoulos M, Schreiber U, Kaiser W and Roitsch T (2004) Complex
    regulation of gene expression, photosynthesis and sugar levels by pathogen infection in
    tomato. Physiologia Plantarum 4: 419-428
    Bogacki P, Oldach KH and Williams KJ (2008) Expression profiling and mapping of
    defence response genes associated with the barley- Pyrenophora teres incompatible
    interaction. Mol Plant Pathol. 5: 645-660
    Brandt J, Thordal-Christensen H, Vad K, Gregersen PL and Collinge DB (1992) A
    pathogen-induced gene of barley encodes a protein showing high similarity to a protein
    kinase regulator. Plant J. 2: 815–820
    Brodersen P, Petersen M, Pike H.M, Olszak B, Skov S, Odum N, Jorgensen LB,
    Brown RE and Mundy J (2002) Knockout of Arabidopsis
    ACCELERATED-CELL-DEATH11 encoding a sphingosin transfer protein causes
    activation of programmed cell death and defense. Genes Dev. 16: 490–502
    Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F,
    Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps
    JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T,
    Dangl JL, Wang X and Zhu T (2002) Expression profile matrix of Arabidopsis
    transcription factor genes suggests their putative functions in response to environmental
    stresses. Plant Cell 3: 559-574
    Cinti DL, Cook L, Nagi MN and Suneja SK (1992) The fatty acid chain elongation
    system of mammalian endoplasmic reticulum. Prog Lipid Res. 1: 1-51
    Collmer A and Keen NT (1986) The Role of Pectic Enzymes in Plant Pathogenesis.
    Annu.l Rev. Phytopathol. 24: 383-409
    Cother EJ and Gilbert RL (1990) Presence of Erwinia chrysanthemi in two major river
    systems and their alpine sources in Australia. J. Appl. Bacteriol. 69: 629-738
    Doke N (1983) Involvement of superoxide anion generation in the hypersensitive
    response of potato tuber tissues to infection with an incompatible race of Phytophthora
    infestans and to the hyphal wall components. Physiol. Plant Pathol. 23: 345–357
    Dong J, Chen C and Chen Z (2003) Expression profiles of the Arabidopsis
    WRKY gene superfamily during plant defense response. Plant Mol Biol. 1: 21-37
    Dunn T (2001) Tsc13p is required for fatty acid elongation and localizes to a novel
    structure at the nuclear-vacuolar interface in Saccharomyces cerevisiae. Mol Cell Biol. 1:
    109-25
    Eric L (2001) Programmed cell death, mitochondria and the plant hypersensitive
    response. Nature 411: 848-853
    Fagard M, Dellagi A, Roux C, Périno C, Rigault M, Boucher V, Shevchik VE and
    Expert D (2007) Arabidopsis thaliana expresses multiple lines of defense to
    counterattack Erwinia chrysanthemi. Mol Plant Microbe Interact. 7: 794-805
    Gable K, Garton S, Napier JA and Dunn TM (2004). Functional characterisation of
    the Arabidopsis thaliana ortholog of Tsc13p, the enoyl reductase of the yeast microsomal
    fatty acid elongating system. J. Exp. Bot. 55: 543–545
    Gray JE, Holroyd GH, van der Lee FM, Bahrami AR, Sijmons PC, Woodward FI,
    Schuch W and Hetherington AM (2000) The HIC signalling pathway links CO2
    perception to stomatal development. Nature 408: 713-716
    Hamilton AJ and Baulcombe DC (1999) A species of small antisense RNA in
    posttranscriptional gene silencing in plants. Science 5441: 950-952
    Hammerschmidt R (1999) PHYTOALEXINS: What have we learned after 60 years?
    Annu. Rev. Phytopathol. 37: 285-306
    Hammond-Kosack KE and Jones JDJ (1996) Resistance gene-dependent plantdefense responses. Plant Cell 8: 1773–1791
    Haygood RA, Strider DL and Echandi E (1982) Survival of Erwinia chrysanthemi in
    association with Philodendron selloum, other greenhouse ornamentals, and in potting
    media. Phytopathology 72: 853-859
    Heath MC (2000) Nonhost resistance and nonspecific plant defenses. Curr Opin Plant
    Biol. 4:315-319
    Hiraga S, Sasaki K, Ito H, Ohashi Y and Matsui H (2001) A large family of class III
    plant peroxidases. Plant Cell Physiol. 5: 462-468
    Jakoby M,Weisshaar B, Dröge-LaserW, Vicente-Carbajosa J, Tiedemann J, Kroj T,
    Parcy F and bZIP Research Group (2002) bZIP transcription factors in Arabidopsis.
    Trends Plant Sci. 3: 106-111
    Kohlwein SD, Eder S, Oh CS, Martin CE, Gable K, Bacikova D and Lamb C and
    Dixon RA (1997) The oxidative burst in plant disease resistance. Annual Review of Plant
    Physiology and Plant Molecular Biology 48: 251-275
    Kunst L and Samuels AL (2003) Biosynthesis and secretion of plant cuticular wax.
    Prog Lipid Res. 1: 51-80
    Lamb C and Dixon RA (1997) The oxidative burst in plant disease resistance. Annu.
    Rev. Plant Physiol. Plant Mol. Biol. 48: 251–275
    Lambeth JD (2004) NOX enzymes and the biology of reactive oxygen. Nat. Rev.
    Immunol. 4: 181–189
    Liang H, Yao N, Song JT, Luo S, Lu H and Greenberg JT (2003) Ceramides
    modulate programmed cell death in plants .Genes Dev.17: 2636–2641
    Li J, Brader G and Palva ET (2004) The WRKY70 transcription factor: a node ofconvergence for jasmonate-mediated and salicylate-mediated signals in plant defense.
    Plant Cell 2: 319-331
    Lu HC, Chen HH, Tsai WC, Chen WH, Su HJ, Chang DC and Yeh HH (2007)
    Strategies for functional validation of genes involved in reproductive stages of orchids.
    Plant Physiol. 2: 558-569
    Millar DJ, Whitelegge JP, Bindschedler LV, Rayon C, Boudet AM, Rossignol M,
    Borderies G and Bolwell GP (2009) The cell wall and secretory proteome of a tobacco
    cell line synthesising secondary wall. Proteomics 9: 2355-2372
    Montgomery MK and Fire A (1998) Double-stranded RNA as a mediator in
    sequence-specific genetic silencing and co-suppression. Trends Genet. 7: 255-263
    Moon YA and Horton JD (2003) Identification of two mammalian reductases involved
    in the two-carbon fatty acyl elongation cascade. J Biol Chem. 9: 7335-7343
    Morel JB and Dangl JL (1997) The hypersensitive response and the induction of cell
    death in plants. Cell Death Differ. 8: 671-683
    Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a Chimeric Chalcone
    Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes
    in trans. Plant Cell 4: 279-289
    Ohlrogge J and Browse J (1995) Lipid biosynthesis. Plant Cell 7: 957-970
    Okinaka Y, Yang CH, Perna NT and Keen NT (2002) Microarray profiling of Erwinia
    chrysanthemi 3937 genes that are regulated during plant infection. Mol Plant Microbe
    Interact. 7: 619-629
    Palma K, Zhang Y and Li X (2005) An importin alpha homolog, MOS6, plays an
    important role in plant innate immunity. Curr Biol. 12: 1129-1135
    Park JA, Kim TW, Kim SK, Kim WT and Pai HS (2005) Silencing of NbECR
    encoding a putative enoyl-CoA reductase results in disorganized membrane structures
    and epidermal cell ablation in Nicotiana benthamiana. FEBS Lett. 20: 4459-4464
    Poulos A (1995) Very long chain fatty acids in higher animals. Lipids 1: 1-14
    Pruitt RE, Vielle-Calzada JP, Ploense SE, Grossniklaus U and Lolle SJ (2000)
    FIDDLEHEAD, a gene required to suppress epidermal cell interactions in Arabidopsis,
    encodes a putative lipid biosynthetic enzyme. Proc Natl Acad Sci U S A. 3: 1311-1316
    Ratcliff F, Harrison BD and Baulcombe DC (1997 ) A similarity between viral defense
    and gene silencing in plants. Science 5318: 1558-1560
    Ratcliff F, Martin-Hernandez AM and Baulcombe DC (2001) Technical Advance.
    Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 2:
    237-245
    Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda
    O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ,
    Ghandehari D, Sherman BK and Yu G (2000) Arabidopsis transcription factors:
    genome-wide comparative analysis among eukaryotes. Science 5499: 2105-2110
    Roberts MR (2003) 14-3-3 proteins find new partners in plant cell signalling. Trends
    Plant Sci. 5: 218-223
    Salin ML (1988) Toxic oxygen species and protective systems of the chloroplast.
    Physiologia Plantarum 72: 681–689
    Sepulchre JA, Reverchon S and Nasser W (2007) Modeling the onset of virulence in a
    pectinolytic bacterium. J Theor Biol. 2: 239-257
    Shah J (2005) Lipids, lipases, and lipid-modifying enzymes in plant disease resistance.
    Annu Rev Phytopathol. 43: 229-260
    Shinozaki K and Yamaguchi-Shinozaki K (2000) Molecular responses to dehydration
    and low temperature: differences and cross-talk between two stress signaling pathways.
    Curr Opin Plant Biol. 3: 217-223
    Stanghellini ME (1982) Soft-rotting bacteria in the rhizosphere. Pages 249-261 in:
    Phytopathogenic Prokaryotes, Vol. 1. M. Mount and G..
    Todd J, Post-Beittenmiller D and Jaworski JG (1999) KCS1 encodes a fatty acid
    elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana.
    Plant J. 2: 119-130
    Torres MA, Jones JD and Dangl JL (2006) Reactive Oxygen Species Signaling in
    Response to Pathogens. Plant Physiology 2: 373-378
    Williams LE, Lemoine R and Sauer N (2000) Sugar transporters in higher plants--a
    diversity of roles and complex regulation. Trends Plant Sci. 7: 283-290
    Yephremov A, Wisman E, Huijser P, Huijser C, Wellesen K and Saedler H (1999)
    Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between
    adhesion response and cell differentiation in the epidermis. Plant Cell11: 2187-2201
    Zheng H, Rowland O and Kunst L (2005) Disruptions of the Arabidopsis Enoyl-CoA
    reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell
    expansion during plant morphogenesis. Plant Cell 5: 1467-1481
    Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J and Klessig DF (2000) NPR1
    differentially interacts with members of the TGA/OBF family of transcription factors
    that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant
    Microbe Interact. 2: 191-202

    下載圖示 校內:2014-08-28公開
    校外:2014-08-28公開
    QR CODE