| 研究生: |
陳志諺 Chen, Chih-Yen |
|---|---|
| 論文名稱: |
發光二極體電特性曲線之數值模型 Numerical Modeling of Current-Voltage Characteristics for Light-Emitting Diodes |
| 指導教授: |
洪茂峰
Houng, Mau-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 65 |
| 中文關鍵詞: | 非線性迴歸 、擴散-復合模型 、載子傳輸現象 、載子陷阱填補過程 |
| 外文關鍵詞: | diffusion-recombination model, nonlinear regression, carrier transport phenomena, trap-filling process |
| 相關次數: | 點閱:94 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個有系統的參數萃取方法來分析電流傳輸理論,以建立發光二極體電特性曲線之數值模型。為了考量發光二極體的非理想效應,此模型使用修正過的Shockley方程式,包含串聯電阻及非發光載子復合 (nonradiative recombination),以建立擴散-復合模型。本論文使用兩步驟的迭代演算法結合非線性迴歸,以實現符合物理之電特性曲線模型。此數值方法可以有系統地分析多種發光二極體之電特性,有極高的準確性。所計算得到的復合電流可以量化Shockley-Read-Hall recombination,並提供發光二極體的磊晶品質給工程師參考。在本論文的分析過程中發現,分析區間須小心地選擇,以確保此模型是應用在適當的載子傳輸現象之中。由於GaN發光二極體具有較高的缺陷密度(dislocation),其順向偏壓往往較AlGaAs及AlGaInP系列的發光二極體較高。而這些不同系列的載子陷阱 (trap) 具有不同的載子陷阱填補行為,反映在電特性曲線上。因此,我們可以從電特性曲線藉由擴散-復合模型,來估計陷阱填補過程。
本模型所萃取的參數包含zero-bias recombination current, reverse-bias saturation current, 及 series resistance。本論文提出簡易演算法,利用這些物理參數,計算復合-擴散電流之交會點;此交會點理論上代表兩項電流值相等,並可指出內部量子效率為50%之電壓值。本論文利用此復合-擴散交會點來驗證分析發光二極體之正確性,以偵測分析區間中的其他電流傳輸現象。此模型所計算之復合-擴散交會點與實驗值吻合,驗證了此模型之正確性。其後,此復合-擴散交會點可指出發光二極體之發光效率:當復合-擴散交會電壓值愈低,表示載子陷阱填補過程愈短,則順向偏壓值愈低。
In this dissertation, a systematic technique for numerical modeling of the current-voltage characteristics (I-V) for light-emitting diodes (LEDs) based on current transport mechanisms is proposed. The revised Shockley equation is employed under the consideration of nonideal effects, inclusive of series resistance and nonradiative recombination, leading to the diffusion-recombination model. The two-step iteration combined with the nonlinear regression technique to extract physical parameters for diodes, using a simple physical-based current-voltage model is demonstrated. The method has been applied to a wide variety of LEDs, and found to be an accurate and systematic technique for extracting diode parameters. The calculated recombination currents quantify the Shockley-Read-Hall recombination involving with localized states in LEDs, which can reveal the epitaxial quality for engineers. It has been found that the analyzing regime should be carefully chosen, for the adequate carrier transport phenomena. Frequently, the GaN-based LEDs bears higher forward voltage than the AlGaAs or AlGaInP-related LEDs, due to the high dislocation density in the epilayers. The various sets of traps have different trap-filling behaviors, which reflect on the I-V characteristics. Conversely, one can speculate the trap-filling process from the I-V plot.
The extracted parameters are zero-bias recombination current, reverse-bias saturation current, and series resistance. These parameters consists of the particular parameter for recombination-diffusion crossover, at which the recombination and diffusion currents have the same magnitude, indicating the theoretical internal quantum efficiency of 50%. In this dissertation, the recombination-diffusion crossover is proposed to examine the validity of the LED analyses by excluding the currents except for diffusion and recombination. The numerical recombination-diffusion crossover is in good accordance with the experiment at the adequate analyzing regime, which demonstrates the accuracy for the diffusion-recombination model. Consequently, the derived crossover reveals the optical efficiency for LEDs: The lower value for the crossover voltage, the shorter the trap-filling process and hence the lower value for forward voltage (operating voltage at 20 mA).
[1] H. Norde, “A modified forward I-V plot for Schottky diodes with high
series resistance,” J. Appl. Phys. 50, 5052 (1979).
[2] S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York,
1981).
[3] K. Sato and Y. Yasumura, “Study of forward I-V plot for Schottky diodes
with high series resistance,” J. Appl. Phys. 58, 3655 (1985).
[4] R. M. Cibils and R. H. Buitrago, “Forward I-V plot for nonideal Schottky
diodes with high series resistance,” J. Appl. Phys. 58, 1075 (1985).
[5] K. E. Bohlin, “Generalized Norde plot including determination of the
ideality factor,” J. Appl. Phys. 60, 1223 (1986).
[6] S. K. Cheung and N. W. Cheung, “Extraction of Schottky diode parameters
from forward current-voltage characteristics,” Appl. Phys. Lett. 49, 85
(1986).
[7] R. J. Bennett, “Interpretation of forward bias behavior of Schottky
barriers,” IEEE Trans. Electron Devices ED-34, 935 (1987).
[8] T. C. Lee, S. Fung, C. D. Beling, and H. L. Au, “A systematic approach
to the measurement of ideality factor, series resistance, and barrier
height for Schottky diodes,” J. Appl. Phys. 72, 4739 (1992).
[9] A. Ortiz-Conde, Y. Ma, J. Thomson, E. Santos, J. J. Liou, F. J. García Sá
nchez, M. Lei, J. Finol, and P. Layman, “Direct extraction of
semiconductor device parameters using lateral optimization method,”
Solid-State Electron. 43, 845 (1999).
[10] A. Ferhat-Hamida, Z. Ouennoughi, A. Hoffmann, and R. Weiss, “Extraction
of Schottky diodes parameters including parallel conductance using a
vertical optimization method,” Solid-State Electron. 46, 615 (2002).
[11] S. M. Sze, C. R. Crowell, and D. Kahng, “Photoelectric determination of
the image force dielectric constant for hot electrons in Schottky
barriers,” J. Appl. Phys. 35, 2534 (1964).
[12] J. Bardeen, “Surface states and rectification at a metal semiconductor
contact,” Phys. Rev. 71, 717 (1947).
[13] A. Y. C. Yu and E. H. Snow, “Surface effects on metal-silicon
contacts,” J. Appl. Phys. 39, 3008 (1968).
[14] F. A. Padovani, “Forward voltage-current characteristics of metal-
silicon Schottky barriers,” J. Appl. Phys. 38, 891 (1966).
[15] F. A. Padovani, “Graphical determination of the barrier height and
excess temperature of a Schottky barrier,” J. Appl. Phys. 38, 921
(1965).
[16] H. K. Henisch, Rectifying Semiconductor Contacts (Clarendon Press,
Oxford, 1957).
[17] H. H. GÜttler and J. H. Werner, “Influence of barrier inhomogeneities
on noise at Schottky contacts,” Appl. Phys. Lett. 56, 1113 (1990).
[18] J. H. Werner and H. H. GÜttler, “Barrier inhomogeneities at Schottky
contacts,” J. Appl. Phys. 69, 1522 (1991).
[19] J. H. Werner, “Schottky barrier and p-n junction I-V plots: Small
signal evaluation,” Appl. Phys. A 47, 291 (1988).
[20] M. Lyakas, R. Zaharia, and M. Eizenberg, “Analysis of nonideal Schottky
and p-n junction diodes: Extraction of parameters from I–V plots,” J.
Appl. Phys. 78, 5481 (1995).
[21] V. Mikhelashvili, G. Eisenstein, V. Garber, S. Fainleib, G. Bahir, D.
Ritter, M. Orenstein, and A. Peer, “On the extraction of linear and
nonlinear physical parameters in nonideal diodes,” J. Appl. Phys. 85,
6873 (1999).
[22] J. B. Fedison, T. P. Chow, H. Lu, and I. B. Bhat, “Electrical
characteristics of magnesium-doped gallium nitride junction diodes,”
Appl. Phys. Lett. 72, 2841 (1998).
[23] A. Chitnis, A. Kumar, M. Shatalov, V. Aidvarahan, A. Lunev, J. W. Yang,
G. Simin, and M. Asif Khan, “High-quality p-n junctions with quaternary
AlInGaN/InGaN quantum wells,” Appl. Phys. Lett. 77, 3800 (2000).
[24] X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and
D. Walker, “Diffusion and tunneling currents in GaN/InGaN multiple
quantum well light-emitting diodes,” IEEE Electron Device Lett. 23, 535
(2002).
[25] W. Shockley, “The theory of p-n junctions in semiconductors and p-n
junction transistors,” Bell Sys. Tech. J. 28, 435 (1949).
[26] W. Shockley, Electrons and Holes in Semiconductors (Princeton, New
Jersey, 1950).
[27] R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87,
387 (1952).
[28] W. Shockley and W. T. Read, Jr., “Statistics of recombinations of holes
and electrons,” Phys. Rev. 87, 835 (1952).
[29] C. T. Sah, R. N. Noyce, and W. Shockley, “Carrier generation and recom-
bination in p-n junctions and p-n junction characteristics,” Proc. IRE
45, 1228 (1957).
[30] W. Shockley, “Electrons, holes, and traps,” Proc. IRE 46, 973 (1958).
[31] E. F. Schubert, Light-Emitting Diodes (Cambridge Press, 2003).
[32] S. M. Sze, Semiconductor Devices: Physics and Technology 2nd ed. (Wiley,
New York, 2001).
[33] D. Donoval, J. S. Pires, P. A. Tove, and R. Harman, “A self consistent
approach to IV-measurements on rectifying metal-semiconductor
contacts,” Solid-State Electron. 32, 961 (1989).
[34] Y. P. Song, R. L. Van Meirhaeghe, W. H. Laflère, and F. Cardon, “On the
difference in apparent barrier height as obtained from capacitance-
voltage and current-voltage-temperature measure- ments on Al/p-InP
Schottky barriers,” Solid-State Electron. 29, 633 (1986).
[35] Y. S. Lou and C. Y. Wu, “A self-consistent characterization methodology
for Schottky-barrier diodes and ohmic contacts,” IEEE. Tran. Electron.
Device 41, 558 (1994).
[36] K. Suzue, S. N. Mohammand, Z. F. Fan, W. Kim, O. Aktas, A. E.
Botchkarev, “Electrical conduction in platinum-gallium nitride Schottky
diodes,” J. Appl. Phys. 80, 4467 (1996).
[37] J. J. Lee, J. Brini, and C. A. Dimitriadis, “Simple parameter
extraction method for non-ideal Schottky barrier diodes,” Electron.
Lett. 34, 1268 (1998).
[38] G. Brezeanu, M. Badila, B. Tudor, J. Millan, P. Godignon, M. L.
Locatelli, J. P. Chante, G. A. J. Amaratunga, F. Udrea, and A. Mihaila,
“Accurate modeling and parameter extraction for Ni/6H-SiC Schottky
barrier diodes (SBD) forward characteristics at high current
densities,” IEEE. Proc. Semiconductor 1, 193 (2000).
[39] G. Brezeanu, M. Badila, B. Tudor, J. Millan, P. Godignon, F. Udrea, G.
A. J. Amaratunga, and A. Mihaila, “Accurate modeling and parameter
extraction for 6H-SiC Schottky barrier diodes (SBDs) with nearly ideal
breakdown voltage,” IEEE. Tran. Electron. Device 48, 2148 (2001).
[40] V. Aubry and F. Meyer, “Schottky diodes with high series resistance:
Limitations of forward I-V method,” J. Appl. Phys. 76, 7973 (1994).
[41] F. J. García, A. Ortiz-Conde, and J. J. Liou, “Parasitic series
resistance-independent method for device-model parameter extraction,”
IEEE. Proc. Circuits Devices Syst. 143, 68 (1996).
[42] H. Wong and W.H. Lam, “A robust parameter extraction method for diode
with series resistance,” IEEE Proc. Electron. Devices, 38 (2001).
[43] Y. B. Acharya and P. D. Vyavahare, “Remodeling light emitting diode in
low current region,” IEEE Tran. Electron. Devices 45, 1426 (1998).
[44] R. M. Warner, Jr. and K. Lee, “Modeling the space-charge-layer boundary
of a forward-bias junction,” J. Appl. Phys. 53, 5304 (1982).
[45] A. Gaci, A. Maxim, M. Ahmadpanah, D. Andreu, and J. Boucher,
“Comparison of main models for generation-recombination space-charge
current in abrupt p-n junction,” IEEE Proc. Microelectron. 1, 253
(1997).
[46] A. Gaci, B. Raiff, M. Ahmadpanah, and J. Boucher, “Space- charge
generation-recombination current in an abrupt p-n junction subjected to
small bias,” IEEE Tran. Electron. Devices 45, 331 (1998).
[47] K. Yamaguchi, T. Teshima, and H. Mizuta, “Numerical analysis of an
anomalous current assisted by locally generated deep traps in pn
junctions,” IEEE Tran. Electron. Devices 46, 1159 (1999).
[48] F. Feller, C. Rothe, M. Tammer, and D. Geschke, “Temperature dependence
of the space-charge distribution in injection lmited conjugated polymer
structures,” J. Appl. Phys. 91, 9225 (2002).
[49] D. E. Fulkerson and A. Nussbaum, “A computer solution for the steady-
state behaviour of a pn-junction diode,” Solid-State Electron. 9, 709
(1966).
[50] C. Boutrit, J. C. Georges, and S. Ravelet, “Computer techniques for
solving Schottky barrier from dark forward current-voltage
characteristics,” IEEE Proc. 127 Pt. 1, 250 (1980).
[51] C. D. Lien, F. C. T. So, and M. A. Nicolet, “An improved forward I-V
method for nonideal Schottky diodes with high series resistance,” IEEE
Tran. Electron. Devices 31, 1502 (1984).
[52] A. N. Ishaque, J. W. Howard, M. Becker, and R. C. Block, “An extended
ambipolar model: Formulation, analytical investigations, and application
to photocurrent modeling,” J. Appl. Phys. 69, 307 (1991).
[53] E. K. Evangelou, L. Papadimitriou, C. A. Dimitriades, and G. E.
Giakoumakis, “Extraction of Schottky diode and p-n junction parameters
from I-V characteristics,” Solid-State Electron. 36, 1633 (1993).
[54] A. Ortiz-Conde, F. J. García Sánchez, J. J. Liou, J. Andrian, R. J.
Laurence and P. E. Schmidt, “A generalized model for a two-terminal
device and its applications to parameter extraction ” Solid-State
Electron. 38, 265 (1994).
[55] F. J. García Sánchez, A. Ortiz-Conde, and J. J. Liou, “Calculating
double-exponential diode model parameters from previously extracted
single-exponential model parameters,” Electron. Lett. 31, 71 (1995).
[56] J. Osvald and E. Dobročka, “Generalized approach to the parameter
extraction from I-V characteristics of Schottky diodes,” Semicond Sci
Technol. 11, 1198 (1996).
[57] A. G. M. Strollo and E. Napoli, “Improved PIN diode circuit model with
automatic parameter extraction technique,” IEE Proc. Circuits Devices
Syst. 144, 329 (1997).
[58] J. I. Lee, J. Brini, J. Boussey, and C. A. Dimitriadis, “Parameter
extraction in non-ideal thermionic emission diodes,” Appl. Surf. Sci.
142, 481 (1999).
[59] A.T. Bryant, X. Kang, E. Santi, P. R. Palmer, and J. L. Hudgins, “Two-
Step Parameter Extraction Procedure With Formal Optimization for Physics-
Based Circuit Simulator IGBT and p-i-n Diode Models,” IEEE. Tran. Power
Electron. 21, 295 (2006).
[60] A. T. Bryant, P. R. Palmer, J. L. Hudgins, E. Santi, and X. Kang, “The
use of a formal optimisation procedure in automatic parameter extraction
of power semiconductor devices,” IEEE Annul. Power Electron. 2, 822
(2003).
[61] A. I. Prokopyev and S. A. Mesheryakov, “Fast extraction of static
parameters of Schottky diodes from forward I-V characteristics,”
Measurement 37, 149 (2005).
[62] T. R. McNutt, A. R. Hefner, Jr., H. A. Mantooth, J. L. Duliere, D. W.
Berning and R. Singh, “Physics-based modeling and characterization for
silicon carbide power diodes ,” Solid-State Electron. 50, 388 (2006).
[63] F. A. Padovani and G. G. Sumner, “Experimental study of gold-gallium
arsenide Schottky barriers,” J. Appl. Phys. 34, 3744 (1965).
[64] J. C. Manifacier, N. Brortryb, R. Ardebili, and J. P. Charles,
“Schottky diode: Comments concerning the diode parameters determination
from forward I-V plot,” J. Appl. Phys. 64, 2502 (1988).
[65] A. I. Prokopyev and S. A. Mesheryakov, “Restrictions of forward I-V
method for determination of Schottky diode parameters,” Measurement 33,
135 (2003).
[66] H. Xiao, Y. Y. Liu, J. C. H. Phang, D. S. Chan, W. K. Chim, and K. P.
Yan, “Study of LED degradation using CL, EBIC and a two-diode parameter
extraction model,” IEEE 7th Proc. IPFA, 180 (1999).
[67] C. Cané, M. Lozano, I. Gràcia, J. Santander, and E. L. Tamayo, “An easy
technique for determining diffusion and generation- recombination
components of the current of pn junctions for better modelling,” IEEE
Proc. Microelectron. Test Structures 6, 167 (1993).
[68] 林俊安,「發光二極體之能帶缺陷對輸出特性影響之研究」碩士論文,九十二學年
度國立成功大學微電子工程研究所。
[69] M. H. Kutner, C. J. Nachtsheim, and J. Neter, Applied Linear Regression
Models 4th ed. (McGraw Hill Press, New York, 2004).
[70] T. E. Dielman, Applied Regression Analysis 4th ed. (Thomson Press,
Belmont, 2005).
[71] S. C. Chapra, Applied Numerical Methods with MATLAB for Engineers and
Scientists (Mc Graw Hill Press, New York, 2004).
[72] X. A. Cao, J. M. Teetsov, M. P. D’Evelyn, D. W. Merfeld, and C. H. Yan,
“Electrical characteristics of InGaN/GaN light-emitting diodes grown on
GaN and sapphire substrates,” Appl. Phys. Lett. 85, 7 (2004).
[73] X. A. Cao and S. D. Arthur, “High-power and reliable operation of
vertical light-emitting diodes on bulk GaN,” Appl. Phys. Lett. 85, 3971
(2004).
[74] Y. Yue, J. J. Liou, and A. Ortiz-Conde, “High-level injection in quasi-
neutral region of n/p junction devices: Numerical results and empirical
model,” J. Appl. Phys. 77, 1611 (1995).
[75] J. C. Manifacier, R. Ardebili, and C. Popescu, “High level injection
phenomena in p-n junctions,” J. Appl. Phys. 80, 2838 (1996).
[76] T. T. Mnatsakanov D. Schröder, and Schlögl, “Effect of high injection
level phenomena on the feasibility of diffusive approximation in
semiconductor device modeling,” Solid-State Electron. 42, 153 (1998).
[77] R. Ginige, K. Cherkaoui, V. W. Kwan, C. Kelleher, and B. Corbett, “High
injection and carrier pile-up in lattice matched InGaAs/InP p-n diodes
for thermophotovoltaic applications,” J. Appl. Phys. 95, 2809 (2003).
[78] L. D. Edmonds, “High-level injection in n+-p junction silicon
devices,” J. Appl. Phys. 97, 124506 (2005).
[79] H. C. Casey Jr., J. Muth, S. Krishnankutty, and J. M. Zavada,
“Dominance of tunneling current and band filling in InGaN/AlGaN double
heterostructure blue light-emitting diodes,” Appl. Phys. Lett. 68, 2867
(1996).
[80] P. Perlin, M. Osiñski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas,
and P. Sartori, “Low-temperature study of current and
electroluminescence in InGaN/AlGaN/GaN double-heterostructure blue light- emitting diodes,” Appl. Phys. Lett. 69, 1680 (1996).
[81] G. W. Neudeck, Modular Series on Solid State Devices, Vol. 2: The PN
Junction Diode 2nd ed. (Addison-Wesley, 1989).
[82] G. P. Agrawal, Lightwave Technology (Wiley, New York, 2004) .
[83] H. Kressel and A. Elsea, “Effect of generation-recombination currents
on the stress-dependence of Si p-n junction characteristics,” Solid-
State Electron. 10, 213 (1967).
[84] K. M. Vliet, “Noise admittance of the generation-recombination current
involving SRH centers in the space-charge region of junction devices,”
IEEE Tran. Electron. Devices 23, 1236 (1976).
[85] G. Blasquez, “Excess noise sources due to defects in forward biased
junctions,” Solid-State Electron. 21, 1425 (1978).
[86] H. J. Queisser, “Recombination at deep traps,” Solid-State Electron.
21, 1495 (1978).
[87] F. C. Hou, G. Bosman, E. Simoen, J. Vanhellemont, and C. Claeys, “Bulk
defect induced low-frequency noise in n+-p silicon diodes,” IEEE Tran.
Electron. Devices 45, 2526 (1998).
[88] S. L. Rumyantsev, N. Pala, M. S. Shur, E. Borovitskaya, A. P. Dmitriev,
M. E. Levinshtein, R. Gaska, M. A. Kham, J. Yang, X. Hu, and G. Simin,
“Generation-recombination noise in GaN/ AlGaN heterostructure field
effect transistors,” IEEE Tran. Electron. Devices 48, 530 (2001).
[89] S. D. Lester, F. A. Ponce, M. G. Craford, and D. A. Steigerwald, “High
dislocation densities in high efficiency GaN-based light-emitting
diodes,” Appl. Phys. Lett. 66, 1249 (1995).
[90] S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode (Springer,
2000).
[91] F. A. Ponce, D. P. Bour, W. Götz, and P. J. Wright, “Spatial
distribution of the luminescence in GaN thin films,” Appl. Phys. Lett.
68, 57 (1996).
[92] S. J. Rosner, E. C. Carr, M. J. Ludowise, G. Girolami, and H. I.
Erikson, “Correlation of cathodoluminescence inhomogeneity with
microstructural defects in epitaxial GaN grown by metalorganic chemical-
vapor deposition,” Appl. Phys. Lett. 70, 420 (1997).
[93] T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K.
Yamashita, K. Nishino, L. T. Romano, and S. Sakai, “Direct evidence
that dislocations are non-radiative recombination centers in GaN,” Jpn.
J. Appl. Phys. 37, L398 (1998).
[94] T. Sugahara, M. Hao, T. Wang, D. Nakagawa, Y. Naoi, K. Nishino, and S.
Sakai, “Role of dislocation in InGaN phase separation,” Jpn. J. Appl.
Phys. 37, L1195 (1998).
[95] D. Cherns, S. J. Henley, and F. A. Ponce, “Edge and screw dislocations
as nonradiative centers in InGaN/GaN quantum well luminescence,” Appl.
Phys. Lett. 78, 2691 (2001).
[96] P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. Keller, J. S.
Speck, S. P. Denbaars, and U. K. Mishra, “Electrical characterization
of GaN p-n junctions with and without threading dislocations,” Appl.
Phys. Lett. 73, 975 (1998).
[97] E. G. Brazel, M. A. Chin, and V. Narayanamurti, “Direct observation of
localized high current densities in GaN films,” Appl. Phys. Lett. 74,
2367 (1999).
[98] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, J. Kim, F. Ren, M. E.
Overberg, G. T. Thaler, C. R. Abernathy, S. J. Pearton, C. M. Lee, J. I.
Chyi, R. G. Wilson, and J. M. Zavada, “Electrical and
electroluminescent properties of GaN light emitting diodes with the
contact layer implanted with Mn,” Solid-State Electron. 47, 963 (2003).
[99] S. J. Henley and D. Cherns, “Cathodoluminescence studies of threading
dislocations in InGaN/GaN as a function of electron irradiation dose,”
J. Appl. Phys. 93, 3934 (2003).