簡易檢索 / 詳目顯示

研究生: 陳儒賢
Chen, Ju-Hsien
論文名稱: 不同介電材料之表面能對pentacene複晶薄膜所產生之應力的研究
The strain of polycrystalline pentacene films induced by surface energy of gate dielectrics
指導教授: 周維揚
Chou, Wei-Yang
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 68
中文關鍵詞: 耦合能相轉變表面能五環素
外文關鍵詞: pentacene, surface energy, coupling energy, phase transition
相關次數: 點閱:83下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們成功利用了具低表面能的光配向聚亞醯胺層(photoalignment polyimide;簡稱PAPI)來降低SiO2的表面能,使載子遷移率由0.02 cm2/Vs提升到0.35 cm2/Vs。此外,對不同厚度pentacene薄膜的樣品進行分析,利用拉曼散射光譜(Raman spectrum)可觀察到pentacene薄膜在1158 cm-1的Davydov-splitting,且由此分裂訊號可計算分子間的耦合能(coupling energy),發現pentacene薄膜厚度低於30 nm時,PAPI上有較大的耦合能。再由X-ray繞射結果指出,當pentacene成長在PAPI上,有較佳的晶格結構。且由計算d-spacing可推測pentacene分子的c軸(亦即長軸)一開始是以近乎垂直的型態成長在介電層表面,然後再漸漸隨著厚增加而傾斜,當厚度超過30 nm時,與介電層表面之夾角約介於72°~74°之間。此結果亦成功證實了pentacene在30 nm時會有相轉變,晶相由正菱晶系(Orthorhombic phase)轉變為三斜晶系(Triclinic phase)。最後藉由原子力顯微鏡的觀察pentacene薄膜表面結構,得知最初成長在介電層上的pentacene分子的晶粒大小會與表面能有關。

    The mobility of organic thin film transistors (OTFTs) has been improved from 0.02 to 0.35 cm2/Vs by using photoaligned polyimide (PAPI) as a modification layer due to the reduction of the surface free energy of SiO2 dielectric. By calculating the coupling energy of Raman spectrum splitting at 1158 cm-1, the pentacene film grown on the PAPI film has larger coupling energy than that deposited on the surface of native SiO2. The low surface free energy of PAPI results in enhancements of the coupling energy and the field-effect mobility of pentacene-based OTFTs. Additionally, the results of X-ray diffraction indicate that the crystal quality of the pentacene film grown on the surface of PAPI is better than that deposited on the SiO2. From the analysis of X-ray data, the pentacene molecules are almost perpendicular on the dielectric initially, then tilt angle decreases with increasing thickness of the pentacene film. The tilt angles of pentacene molecules maintain at range of 72° to 74° until the thickness of the pentacene film above 30 nm. This result coincides with the phase transition of the pentacene film from orthorhombic phase to triclinic phase at 30 nm calculated by Drummy et al. By atomic force micro-spectroscopy, the grain morphology of pentacene film is highly relative to surface energy of dielectric

    摘要 I ABSTRACT II 致謝 III 目次 IV 表目錄 VII 圖目錄 VIII 第1章 簡介 1 1.1 有機半導體(ORGANIC SEMICONDUCTOR) 1 1.1.1 有機半導體之簡介 1 1.1.2 有機半導體的傳輸機制 6 1.1.3 Pentacene的簡介 8 1.2 有機薄膜電晶體 9 1.2.1 有機薄膜電晶體概論 9 1.2.2 有機薄膜電晶體之結構 10 1.2.3 基本原理 11 1.2.4 基本特性及公式 13 1.2.5 有機薄膜電晶體之製程 14 第2章 實驗原理及量測 16 2.1 物理氣相沉積蒸鍍系統 16 2.2 紫外光配向系統 18 2.3 物性分析 18 2.3.1 拉曼散射量測系統 18 2.3.2 X-ray 繞射量測系統 21 2.3.3 表面能之量測 23 2.3.4 原子力顯微鏡系統 24 2.4 電性分析 26 第3章 介電層表面能對有機半導體層載子傳輸的影響 27 3.1 元件之製作 27 3.2 電性結果與討論 29 3.3 RAMAN的量測與結果討論 32 3.3.1 Raman的量測 32 3.3.2 結果討論 32 3.4 X-RAY分析 36 3.5 AFM分析 38 3.6 結論 40 第4章 不同厚度的PENTACENE薄膜對元件特性的影響 41 4.1 元件之製作 41 4.2 電性的結果與討論 41 4.3 RAMAN結果與討論 47 4.4 X-RAY分析 51 4.5 AFM的比較 56 4.6 綜合討論 63 第5章 結論與未來展望 65 參考文獻 66

    [1]. M. Pope, C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed., Oxford University Press, Oxford 1999, pp.337-340.
    [2]. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. shirakawa, E. J. Louis, S. C. Gan, and A. G.. Macdiarmid, Phys. Rev. Lett. 39, 1098 (1997).
    [3]. F. Garnier, R. Hajlaoui, A. Yassar, P. Srivastava, Science 265, 1684 (1994).
    [4]. G. A. de Wijs, C. C. Mattheusa, R. A. de Groot, T. T. M. Palstra, Synth. Met. 139,109 (2003).
    [5]. R. sterbacka, C. P. An, X. M. Jiang and Z. V. Vardeny, Science 287, 839 (2000).
    [6]. C. D. Dimitrakopoulos, Patrick R. L. Malenfant, Adv. Mater. 14, 99 (2002).
    [7]. Y. Sun, Y. Liu and D. Zhu, J. Mater. Chem. 15, 53 (2005).
    [8]. D. Gamota, J. Zhang, P. Brazis, K. Kalyanasundaram, “Printed organic and molecular electronics,” Kluwer Academic Publishers 2004.
    [9]. 林士廷, 國立成功大學碩士論文(2004).
    [10]. T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, T. D. Jones, Mater. Res. Soc. Symp. Proc. 771, 169 (2003).
    [11]. R. Ruiz, B. Nickel, N. Koch, L. Feldman, R. Haglund, A. Kahn, G. Scoles, Phys. Rev. B 67, 125406 (2003).
    [12]. 買昱椉, 國立成功大學碩士論文(2004).
    [13]. F. Barbe and C. R. Westgate, J. Phys. Chem. Solids 31, 2679 (1970).
    [14]. M. L. Petrova, L. D. Rozenshtein, and Fiz. Tverd. Tela(Sov. Phys.-Solid State)12, 961 (1970).
    [15]. F. Ebisawa, T. Kurokawa, and S. Nara, J. Appl. Phys. 54, 3255 (1983).
    [16]. H. Koezuka, A. Tsumura, and T. Ando, Synth. Met. 18, 699 (1987); A. Tsumura, H. Koezuka, and Y. Ando, Synth. Met. 25, 11 (1988).
    [17]. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Trans. Electron. Devices 44, 1325 (1997).
    [18]. D. Knipp, R. A. Street, A. Völkel, J. Ho, J. Appl. Phys. 93, 347 (2003).
    [19]. H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, W. Weber. J. Appl. Phys. 92, 5259 (2002).
    [20]. M. Kiguchi, M. Nakayama, K. Fujiwara, K Ueno, T. Shimada, K. Saiki, J. Appl. Phys. 42, L1408 (2003)
    [21]. A. Facchetti, M. H. YOON, T. J. Marks, Adv. Mater. 17, 1705 (2005).
    [22]. A. C. Mayer, M. L. Swiggers, C. J. Johnson, J. L. Mack, Z. T. Zhu, R. L. Headrick, G. G. Malliaras, in Thin Film Transistor Technologies (ED: Y. Kuo), Electrochemical Society, Pennington, NJ 2002, p.288
    [23]. S. M. Sze, Semiconductor Devices Physics and Technology, 2nd, p.187.
    [24]. M. D. Austin, S. Y. Chou, Applied Physics Letters 81, 4431 (2002).
    [25]. 羅吉宗,”薄膜科技與應用”,全華科技圖書股份有限公司(2004)。
    [26]. J. R. Rerraro, Introductiory Raman Spectroscopy, Academic Press, 2nd, p.15.
    [27]. 郭家瑋, 國立成功大學博士論文(2006).
    [28]. S. Y. Yang, K. Shin, C. E. Park, Adv. Funct. Mater. 15, 1806 (2005).
    [29]. W. Y. Chou and H. L. Chen, Adv. Funct. Mater. 14, 811 (2004).
    [30]. L. F. Drummy, D. C. Martin, Adv. Mater. 17, 903 (2005).
    [31]. H. L. Cheng, W. Y. Chou, C.W. Kuo, F. C. Tang, and Y. W. Wang, Appl. Phys. Lett. 88, 161918 (2006).
    [32]. B. A. Weinstein and R. Zallen, in Light Scattering in Solids Ⅳ( Eds: M. Cardona and G. Güntherodt), Springer, Berlin 1984, P. 500.
    [33]. G. Horowitz, J. Mater. Res. 19, 1946 (2004).
    [34]. S. J. Kang, M. Noh, D. S. Park, H. J. Kim, C. N. Whang, C. H. Chang, J. Appl. Phys. 95,2293 (2004).
    [35]. M. Shtein, J. Mapel, J. B. Benziger, S. R. Forrest, Appl. Phys. Lett. 81, 268 (2002).
    [36]. L. E. Alexander, “X-ray Diffraction Methods in polymer science” Wiley, New York, 429 (1969).

    下載圖示 校內:2008-07-24公開
    校外:2011-07-24公開
    QR CODE