簡易檢索 / 詳目顯示

研究生: 葉玉雯
Yeh, Yu-Wen
論文名稱: 摻銅氧化鋅奈米線電性及室溫丙酮感測性質之研究
Study of electrical and room temperature acetone sensing properties of individual copper doped ZnO nanowires.
指導教授: 黃肇瑞
Huang, Jow-Lay
共同指導教授: 劉全璞
Liu, Chuan-Pu
王瑞琪
Wang, Ruey-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 121
中文關鍵詞: 摻銅氧化鋅p-type 氧化鋅奈米線室溫氣體感測丙酮感測
外文關鍵詞: Cu-deopd ZnO nanowires, p-type ZnO, acetone sensing, room temperature
相關次數: 點閱:90下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 於此研究中,在氧化鋅緩衝層的輔助下以熱化學氣相沉積法藉由成長壓力的調控,可以合成不同摻雜濃度之氧化鋅奈米結構,且因摻雜銅濃度不同可成長具有n或p型半導體電性及結晶性佳之摻銅氧化鋅奈米線。並利用電子束微影技術製作奈米元件進行室溫丙酮感測性質之研究,丙酮氣體感測可應用於醫學糖尿病患者之呼氣檢測上,改善現今須經由血液測量的方式,一般半導體氣體感測操作溫度需高於250˚C才能偵測到。而本實驗藉由即時紀錄奈米線感測過程的電阻變化,發現p型氧化鋅半導體摻銅氧化鋅可於室溫下量測到低濃度之丙酮。並探討丙酮吸附於奈米線上的機制,可以發現在丙酮進入腔體後,氧化鋅的電阻增加,氣體感測靈敏度受吸附及脫附的影響,因此可推算吸附/脫附反應速率常數,而p型半體的吸附及脫附達到最高靈敏度。目前藉由摻雜合成p型氧化鋅,隨著時效的增長,會破壞其p型半導體的傳導電性,因此於本實驗中會於四個月後再次量測摻銅氧化鋅p型半導體之穩定性,並發現p型半導體電性並無明顯改變,因此可知此製程合成的p型氧化鋅具有一定的穩定度。

    We demonstrate the prominent specificity on acetone gas sensing at room temperature by doping ZnO NWs with Cu into p-type. First, undoped ZnO and Cu doped ZnO NWs are synthesized by CVD at 575˚C. The analysis on chemical bonding by XPS proves the substitution of Zn+2 with Cu+1 through doping. Together with EDS with transmission electron microscopy, Cu doping concentration can be up to 3.7 at %. The electrical measurements based on field effect transistors comprised of individual nanowires reveals the transition of n- to p-type at about the doping concentration of 1.1 at%. ZnO NWs will not respond to acetone exposure at room temperature until being doped into p-type with Cu. Moreover, Cu-doped p-type ZnO NWs exhibit supreme specificity in only reacting with acetone and not with other gases tested.

    中文摘要.....I 英文延伸摘要.....II 誌謝.....IX 目錄.....X 表目錄.....XIV 圖目錄.....XV 第一章、 前言及研究目的.....1 1-1. 前言.....1 1-2. 研究動機.....2 第二章、 文獻回顧.....3 2-1. 材料概論.....3 2-1-1. 氧化鋅晶體結構.....3 2-1-2. 氧化鋅能帶結構.....5 2-1-3. 氧化鋅電性質.....6 2-1-4. P型氧化鋅之摻雜.....7 2-2. 氧化鋅奈米材料的成長機制.....9 2-2-1. 氣-液-固(Vapor-Liquid-Solid,VLS)機制.....9 2-2-2. 氣-固(Vapor-Solid,VS)機制.....9 2-3. 氣體感測概論.....11 2-3-1. 氣體感測常用名詞.....11 2-3-2. 氣體吸/脫附理論.....15 2-3-2-1. 物理性吸附(Physisorption).....15 2-3-2-2. 化學性吸附(Chemisorption).....15 2-3-2-3. The Lennard-Jones Model.....16 2-3-3. 氣體感測之工作原理.....19 2-3-4. 氣體反應機制.....24 2-3-4-1. 氧化性氣體反應機制.....24 2-3-4-2. 還原性氣體反應機制.....26 2-4. 丙酮.....30 2-4-1. 丙酮氣感之應用.....30 2-4-1-1. 工業上.....30 2-4-1-2. 醫學上.....30 2-5. 研究現況.....32 第三章、 實驗步驟與分析儀器.....41 3-1. 實驗流程.....41 3-2. 熱化學氣相沉積法成長氧化鋅及摻銅氧化鋅奈米結構.....43 3-3. 電性元件及氣體感測元件製造.....46 3-4. 微結構、成分及表面分析.....48 3-4-1. 掃描式電子顯微鏡(Scanning electron microscopy, SEM).....48 3-4-2. 高解析穿透式電子顯微鏡 (High resolution transmission electron microscopy, HR-TEM).....49 3-4-3. X光繞射儀 (X-ray diffraction, XRD)......50 3-4-4. X光光電子光譜儀 (X-ray photoelectron spectrometer, XPS).....51 3-5. 電性量測.....52 3-5-1. 兩點及四點量測之電性質.....52 3-5-2. 金-氧-半場效二極體(MOSFET)之電性質.....54 3-6. 氣體感測量測.....57 3-6-1. 元件製作.....57 3-6-2. 氣體感測濃度計算.....57 3-6-3. 氣體感測操作步驟.....59 第四章、 結果與討論.....60 4-1. 結構組成分析.....60 4-1-1. Undoped ZnO及CZO奈米結構形貌及微結構分析.....60 4-1-2. ZnO及CZO薄膜之表面成分及其鍵結態分析.....66 4-1-3. Undoped ZnO及CZO薄膜之X-ray繞射.....74 4-1-4. 結論.....78 4-2. UNDOPED ZNO及CZO單根奈米線之電性質.....79 4-2-1. 兩點及四點量測之電性質.....79 4-2-2. 金屬氧化半導體場效二極體(MOSFET)之電性質.....84 4-2-3. 結論.....89 4-3. UNDOPED ZNO及CZO單根奈米線之氣體感測性質.....90 4-3-1. 奈米線對丙酮的反應.....90 4-3-2. 感測機制.....98 4-3-3. 反應速率.....102 4-3-4. 穩定性及選擇性.....108 4-3-5. 結論.....111 第五章、 結論.....112 第六章、 參考文獻.....114

    [1]H. Morkoc and U. Ozgur, “Zinc oxide: Fundamentals, Materials and Device Technology”, Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim, (2009).
    [2]Z. L. Wang, “Zinc oxide nanostructures: growth, properties and applications,” J. Phys.:Condens. Matter, 16, R829 (2004).
    [3]A. Janotti and C. G. Van de Walle, “Fundamentals of zinc oxide as a semiconductor”, Rep. Prog. Phys., 72, 126501, (2009).
    [4]A. R. Hutson, “ Hall effect studies of doped zinc oxide single crystals”, Phys. Rev., 108, 222, (1957).
    [5]S. E. Harrison, “Conductivity and hall effect of ZnO at low temperature”, Phys. Rev., 93, 52, (1954).
    [6]D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwall, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, 81, 1830, (2002).
    [7]K. K. Kim, H. S. Kim, D. K. Hwang, J. H. Lim, and S. J. Park, “Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant”, Appl. Phys. Lett. , 83, 63 (2003).
    [8]Y. R. Ryu, S. Zhu, D. C. Look, J. M. Wrobel, H. M. Jeong, and H.W. White, “ Synthesis of p-type ZnO films”, J. Cryst. Growth. , 216, 330 (2000).
    [9]F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyemann, “High-mobility Sb- doped p-type ZnO by molecular-beam epitaxy”, Appl. Phys. Lett. , 87, 152101 (2005).
    [10]Y. J. Zeng, Z. Z. Ye, W. Z. Xu, D. Y. Li, J. G. Lu, L. P. Zhu, and B. H. Zhao, “Dopant source choice for formation of p -type ZnO: Li acceptor”, Appl. Phys. Lett. , 88, 0621107 (2006).
    [11]S. S. Liu, G. Lu, Z. Z. Ye, H. P. He, X. Q. Gu, L. X. Chen, Y. Huang, and B. H. Zhao, “p-type behavior in Na-doped ZnO films and ZnO homojunction light-emitting diodes”, Solid State Commun. , 148, 25 (2008).
    [12]S. T. Tan, X. W. Sun, Z. G. Yu, P. Wu, G. Q. Lo, and D. L. Kwong, “p -type conduction in unintentional carbon-doped ZnO thin films”, Appl. Phys. Lett. , 91, 072101 (2007).
    [13]K. S. Ahn, T. Deutsch, Y. Yan, C. S. Jiang, C. L. Perkins, J. Turner, and M. A. Jassim, “Synthesis of band-gap-reduced p-type ZnO films by Cu incorporation”, J. Appl. Phys., 102, 023517 (2007).
    [14]W. Tang and D. C. Cameron, “Aluminum-doped zinc oxide transparent conductors deposited by the sol-gel process”, Thin Solid Films, 238, 83, (1994).
    [15]P. X. Gao and Z. L. Wang, “Nanopropeller arrays of zinc oxide”, Appl. Phys. Lett., 84, 2883, (2004)
    [16]R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Appl. Phys. Lett., 4, 89, (1964).
    [17]S. S. Brenner and G. W. Sears, “Mechanism of whisker growth-III nature of growth sites”, Acta Metal. Sin., 4, 1309, (1956).
    [18]M. J. Madou, S. R. Morrison, “Chemical sensing with solid state devices”, Boston: Academic Press, (1989).
    [19]H. J. Kim and J. H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview”, Sens. Actuator B-Chem., 192, 607 (2014).
    [20]P. B. Weisz, “Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis”, J. Chem. Phys., 21, 1531, (1953).
    [21]M. Takata, D. Tsubone, and H. Yanagida, “Dependence of electrical conductivity of ZnO on degree sintering”, J. Am. Ceram. Soc., 59, 4 (1976).
    [22]S. Wei, S. Wang, Y. Zhang, and M. Zhou, “Different morphologies of ZnO and their ethanol sensing property”, Sens. Actuator B-Chem., 480, 192 (2014).
    [23]B. Liu, H. Yang, H. Zhao, L. An, L. Zhang, R. Shi, L. Wang, L. Bao, and Y. Chen, “ Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals”, Sens. Actuator B-Chem., 251, 156 (2011).
    [24]Z. Lou, Y. Feng, X. Liu, L. Wang, and T. Zhang, “Acetone sensing properties of hierarchical ZnO urchinlike structures by hydrothermal process”, Biomed. Eng.- Appl. Basis. Commum., 24, 99, (2012).
    [25]丙酮(acetone)物質安全資料表, 工業技術研究所環境與安全衛生技術發展中心。
    [26]王世宏, “電阻式丙酮氣體感測之導電高分子電極製備與感測性質”, 東海大學化學工程研究所 碩士論文, 2005.
    [27]Christopher K. Mathews and K. E. van Holde, “Biochemistry”, Addision-Wesley 3rd (2000).
    [28]李建雄, 生物化學, 藝軒 (2002).
    [29]D. Paoli, A. Marco, R. J. Waltman, A. F. Diaz, and J. Bargon, “An electrically conductive plastic composite derived from polypyrrole and poly(vinyl chloride)”, J. Polym. Sci. Pol. Chem., 23, 1687, (1985).
    [30]L. Ruangchuary, A. Sirivat, and J. Schwank, “Polypyrrole/poly(methylmethacrylate) blend as selective sensor for acetone in lacquer”, Talanta, 60, 25, (2003).
    [31]P. N. Bartlett and S. K. Ling-Chung, “Conducting polymer gas sensors Part III: Results for four different polymers and five different vapours”, Sens. Actuator, 20, 287, (1989).
    [32]J. Reemts, J. Parisi, and D. Schlettwein, “Electrochemical growth of gas-sensitive polyaniline thin films across an insulating gap”, Thin Solid Films, 466, 320, (2004).
    [33]S. M. Malovanyy, O. I. Milovanova, and E. V. Panov, “Nanostructured tin oxide for gas sensor application”, J. Intern. Sci. Publ.-Mater. Methods Technol., 7, 373, (2013).
    [34]O. Coban, S. Tekmen, and S. Tuzemen, “Detection of oxygen with electrochemically deposited ZnO thin films”, Sens. Actuator B-Chem., 781,186 (2013).
    [35]P. Afzali, Y. Abdi and E. Arzi, “Directional reduction of grapheme oxide sheets using photocatalytic activity of ZnO nanowires for the fabrication of a high sensitive oxygen sensor”, Sens. Actuator B-Chem., 92, 195 (2014).
    [36]Y. Zeng, T. Zhang, M. Yuan, M. Kang, G. Lu, R. Wang, H. Fan, Y. He, and H. Yang, “Growth and selective acetone detection based on ZnO nanorod arrays”, Sens. Actuator B-Chem., 93, 143 (2009).
    [37]Q. Qi, T. Zhang, L. Liu, X. Zheng, Q. Yu, Y. Zeng, and H. Yang, “Selective acetone sensor based on dumbbell-like ZnO with rapid response and recovery”, Sens. Actuator B-Chem., 166, 134 (2008).
    [38]S. Wei, M. Zhou, and W. Du, “Improved acetone sensing properties of ZnO hollow nanofibers by single capillary electrospinning”, Sens. Actuator B-Chem., 753, 160 (2011).
    [39]L. Liu, S. Li, J. Zhuang, L. Wang, J. Zhang, H. Li, Z. Liu, Y. Han, X. Jiang, and P. Zhang, “Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning”, Sens. Actuator B-Chem., 782, 155 (2011).
    [40]J. Q. He, J. Yin, D. Liu, L. X. Zhang, F. S. Cai, and L. J. Bie, “Enhanced acetone gas-sensing performance of La¬2O¬3-doped flowerlike ZnO structure composed of nanorods”, Sens. Actuator B-Chem., 170, 182 (2013).
    [41]汪建民, 材料分析Materials Analysis, (1998).
    [42]S. M. SZE, semiconductor devices, physics and technology, (1985).
    [43]N. A. Lange and J. A. Dean, Lange’s Handbook of chemistry, (1973).
    [44]B. E. Goodby and J. E. Pemberton, “XPS characterization of a commercial Cu/ZnO/Al2O3 catalyst: effects of oxidation, reduction, and the steam reformation of methanol”, Appl. Spectrosc., 42, 754, (1988).
    [45]R. D. Shannon, “Crystal physics, diffraction, theoretical and general crystallography”, Acta Cryst., 32, 751, (1976).
    [46]X. Wang, W. Liu, J. Liu, F. Wang, J. Kong, S. Qiu, C. He, and L. Luan, “Synthesis of nestlike ZnO hierachically porous structures and analysis of their gas sensing properties”, ACS Appl. Mater. Interfaces, 4, 817, (2012).
    [47]X. Chu, X. Zhu, Y. Dong, X. Ge, S. Zhang, and W. Sun, “ Acetone sensors based on La3+ doped ZnO nanorods prepared by solvothermal method”, J. Mater. Sci. Technol., 28, 200, (2012).
    [48]Z. Lou, Y. Feng, X. Liu, L. Wang, and T. Zhang, “Acetone sensing properties of hierarchical ZnO urchinlike structures by hydrothermal process”, Biomed. Eng.- Appl. Basis. Commum., 24, 99, (2012).
    [49]Y. Xiao, L. Lu, A. Zhang, Y. Zhang, L. Sun, L. Huo, and F. Li, “Highly enhanced acetone sensing performances of porous and single crystalline ZnO nanosheets: high percentage of exposed (100) facets working together with surface modification with Pd nanoparticles”, ACS Appl. Mater. Interfaces, 4, 3797, (2012).
    [50]Q. Zhai, B. Du, R. Feng, W. Xu, and Q. Wei, “A highly sensitive gas sensor based on Pd-doped Fe3O4 nanoparticles for volatile organic compounds detection”, Anal. Methods, 6, 886, (2014).
    [51]M. Chen, X. Wang, Y. H. Leung, L. Ding, C. L. Yang, W. K. Ge, and L. S. Wen, “X-ray photoelectron spectroscopy and auger electron spectroscopy studies of Al-doped ZnO films”, Appl. Surf. Sci., 158, 134, (2000).
    [52]Z. G. Wang, X. T. Zu, S. Zhu, and L. M. Wang, “Green luminescence originates from surface defects in ZnO nanoparticles”, Phys. E, 35, 199, (2006).
    [53]P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, “Luminescence mechanism of ZnO thin film investigated by XPS measurement”, Appl. Phys. A, 90, 317, (2008).
    [54]S. Major, S. Kumar, M. Bhantnagar, and K. L. Chopra, “Effect of hydrogen plasma treatment on transparent conducting oxides”, 49, 394, (1986).
    [55]T. Szorenyi, L. D. Laude, I. Bertoti, Z. Kantor, and Z. Geretovszky, “Excimer laser processing of indium-tin-oxide films: An optical investigation”, J. Appl. Phys., 78, 6211, (1995).
    [56]M. J. Madou and S. R. Morrison, Chemical sensing with solid state devices, Boston: Academic Press, 1989.
    [57]D. Manno, G. Micocci, A. Serra, M. Di Giulio, and A. Tepore, “Structural and electrical properties of In[sub2]O[sub3]-SeO[sub2] mixed oxide thin films for gas sensing application”, J. Appl. Phys., 88, 6571, (2000).
    [58]楊子瑩, “氧化鋅及氧化亞錫奈米線室溫氨氣感測性質”, 國立成功大學 碩士論文, 2013.
    [59]L. Peng, T. F. Xie, M. Yang, P. Wang, D. Xu, S. Pang, and D. J. Wang, “Light induced enhancing gas sensitivity of copper-doped zinc oxide at room temperature”, Sens. Actuator B-Chem., 131, 660, (2008).
    [60] M. Gautam and A. H. Jayatissa, “Detection of organic vapor by graphene films functionalized with metallic nanoparticles”, J. Appl. Phys., 112, 114326, (2012).
    [61]A. Lipatov, A. Varezhnikov, P. Wilson, V. Sysoev, A. Kolmakov and A. Sinitskii, “Highly selective gas sensor arrays based on thermally reduced graphene oxide”, Nanoscale, 5, 5426, (2013).

    下載圖示 校內:2017-08-04公開
    校外:2019-08-04公開
    QR CODE