| 研究生: |
葉靜華 Yeh, Ching-Hua |
|---|---|
| 論文名稱: |
骨誘導蛋白-7與中藥-當歸對於糖尿病腎病變腎臟對抗高糖誘導的氧化壓力之研究 Investigation of Bone Morphogenetic protein-7 (BMP-7) and Traditional Chinese Medicine-DangGui (Angelica sinensis) In Protecting Kidney from Hyperglycemia Induced Oxidative Stress in Diabetic Nephropathy |
| 指導教授: |
鄭瑞棠
Cheng, Juei-Tang |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 骨誘導蛋白-7 、當歸 、糖尿病腎病變 、氧化壓力 、高糖 |
| 外文關鍵詞: | Hyperglycemia, Bone Morphogenetic protein-7, Angelica sinensis, Diabetic Nephropathy |
| 相關次數: | 點閱:90 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
糖尿病所引發的腎衰竭,又稱為糖尿病腎病變,已經成為全球嚴重的健康問題,研究糖尿病的分子機轉有助於開發新的糖尿病腎病變治療方法。高血糖在腎臟細胞所引發的氧化壓力與轉型生長因子(TGF-β)是促使糖尿病腎病變發生的主因,骨誘導蛋白-7 (BMP-7) 則協助維持正常的腎功能和腎臟組織結構的完整性,但BMP-7卻在糖尿病腎病變發生的早期就會逐漸消失,因此,如何在糖尿病腎病變過程中保留住腎臟中的BMP-7為重要的研究課題。本研究之目的在於探討BMP-7對於腎臟或腎絲球間質細胞(RMCs)的保護作用是否是藉由降低來自高血糖或高糖所引發的氧化壓力,並且研究中藥-當歸本身是否可以經由保護腎臟BMP-7蛋白表現,或者抑制高血糖引發的氧化壓力,進而達到促進腎功能、保護腎臟的效果。
首先,本研究以鏈佐菌素(streptozotocin;STZ)注射大鼠,誘發成為第一型糖尿病大鼠-STZ誘發九週以後的大鼠視為初期(initial stage)糖尿病腎病變大鼠,STZ誘發十三週以後的大鼠視為確立期(established stage)糖尿病腎病變大鼠--接著給予胰島素或者根皮素(phloridzin)治療。結果顯示,胰島素或根皮素都可以改善初期以及確立期糖尿病腎病變大鼠的血糖與腎功能,同時增加初期糖尿病腎病變大鼠腎臟BMP-7及BMP接受器(BMPR-II)蛋白表現,降低TGF-β、纖維蛋白(fibronectin),但此效果卻未見於確立期尿病腎病變大鼠腎臟。在給予高糖或者rhTGF-β刺激後的RMCs,其細胞內BMP-7及BMP-RII蛋白表現量顯著降低,而此受到抑制的BMP-7蛋白表現量可以在給予TGF-β抗體阻斷後回復。
本研究進一步探討高糖誘導產生的氧化壓力與糖尿病腎病變大鼠腎臟內BMP-7與BMP-RII蛋白表現的關係;在給與糖尿病腎病變大鼠抗氧化劑,tiron,之後,其血中尿素氮(BUN)、血清肌酸酐(creatinine),以及腎臟fibronectin降低,但血糖不受影響,tiron也可增加糖尿病腎病變大鼠腎臟以及高糖處理後的RMCs內BMP-7和BMP-RII蛋白表現,而在高糖處理後,RMCs內增加的活性氧化物(ROS)和TGF-β會受到tiron抑制,在RMCs中的BMP-7受到 RNAi小片段干擾RNA(siRNA)抑制,但是RMCs中BMP-RII受到抗體處理阻擋後,RMCs內所產生的ROS會增加,另一方面,在高糖處理的RMCs培養基中加入rhBMP-7,RMCs內smad-1,5,8 蛋白磷酸化增加,PKCζ與JNK kinase磷酸化降低,同時細胞外間質合成量也減少。
本研究也探討了中藥-當歸是否具有改善腎功能、調節BMP-7與ROS產生的效果;結果顯示在給予一周或者四週的當歸以後,糖尿病腎病變大鼠的腎功能和腎臟BMP-7表現皆受到提升,當歸也可以提升RMCs中高糖所抑制的BMP-7蛋白表現,RMCs若同時給予高糖處理與BMP-7 RNAi抑制時,RMCs會死亡,但是當歸可以增加正常培養基處理RMCs中,受到BMP-7 RNAi抑制後,RMCs內BMP-7蛋白的表現,因此推測當歸可以直接促進BMP-7的蛋白表現。另外,藉由DPPH分析法和ROS產量分析的結果,本研究也得知當歸具有對抗高糖處理後RMCs中產生的ROS的功能。
綜合上述結果,本研究發現在早期糖尿病腎病變,腎功能與腎臟中BMP-7、BMP-RII的表現可以藉由血糖控制達到提升的效果。腎臟中內生性BMP-7可以受到抗氧化劑的提升,進而活化BMP-RII,達到對抗高糖誘導之氧化壓力和保護腎臟的效果。當歸可以直接促進腎臟BMP-7蛋白表現以及抑制高糖誘導之氧化壓力,達到改善腎功能的功效。
Renal failure caused by diabetes mellitus, called the diabetic nephropathy (DN), is a serious health problem in the world. Identifying molecular mechanism of the pathogenesis of DN may be helpful in developing new therapeutics. Oxidative stress in mesangial cell caused by hyperglycemia is closely related to the development of DN. Bone morphorgenetic protein-7 (BMP-7) helps to maintain renal functions and structural integrity; the molecule, however, disappears early during diabetic nephropathy progression. This study aims to investigate 1) how to preserve renal BMP-7 expression during DN progression; 2) whether BMP-7 could prevent kidney or renal mesangial cell (RMCs) from DN through reducing hyperglycemia induced oxidative stress; 3) whether DangGui (Angelica polymorpha Maxim. var sinensis Olive; Radix Angelica sinensis), a traditional Chinese medicine, could improve renal function through reserving renal BMP-7 expression or inhibiting hyperglycemia induced oxidative stress in streptozotocin-induced diabetic rats .
Rats develop initial stage of DN 9 weeks after type-1 like diabetes is induced by STZ injection, and at 13 weeks the DN is at its established stage. Insulin and phloridzin both attenuated hyperglycemia and renal function of STZ-DN rats. The treatment increased the expressions of BMP-7 and BMP receptor (BMP-RII) but decreased TGF-β and fibronectin expressions in kidney via reducing hyperglycemia at the initial stage but not at the established stage of STZ-DN rats. We also determined the effect of glucose on BMP-7 and BMP-RII expressions in RMCs. BMP-7 and BMP-RII in RMCs were markedly reduced by high glucose (HG).
We further investigated the interaction between oxidative stress induced by hyperglycemia and renal BMP-7/BMP-RII expression in STZ-DN rats. The results showed that treatment with antioxidant, tiron, which didn’t changed blood glucose in STZ-DN rats, decreased BUN and creatinine levels and renal fibronectin expression. On the other hand, tiron increased the expressions of BMP-7 and BMP-RII in kidney at the organ level and HG exposed RMCs at the cellular level. Moreover, recombinant human BMP-7 (rhBMP-7) decreased the HG-induced reactive oxygen species (ROS) or TGF-β level in RMCs. The ROS level in RMCs was raised by lowering endogenous BMP-7 either siRNA or anti-BMP-RII treatment. Also, rhBMP-7 increased smad-1, 5, 8 phosphorylation and decreased PKCζ and JNK kinase phosphorylation to lower extracellular matrix synthesis in HG incubated RMCs.
We further investigated further effects of DangGui (Radix A. sinensis) on regulating renal functions, BMP-7 expression, and HG induced ROS generation. After 1-week or 4-week treatment, DangGui improved renal functions by up-regulating the expression of BMP-7 protein in kidney tissue of STZ-DN rats. DangGui also reversed BMP-7 expression reduced by HG in RMCs. Because transfection with BMP-7 RNAi with HG in the culture medium cause RMCs to detach from the culture dish, we hence used normal medium to knock down BMP-7 in RMCs with RNAi. DangGui increased BMP-7 expression in those RMCs transfected by BMP-7 RNAi. Direct activation of BMP-7 gene expression by DangGui could be considered. The anti-oxidative ability of DangGui was identified using DPPH assay, DHE stain, and lucigenin assay in HG exposed RMC. DangGui decreased HG-induced ROS in RMCs.
In conclusion, we found that control of hyperglycemia may improve renal function and reverse renal BMP-7 and BMP-RII in STZ-DN at initial stage of DN. Endogenous BMP-7 is raised by antioxidant to activate BMP-RII for renal protection against the HG induced oxidative stress. DangGui could improve renal functions in STZ-DN rats through increasing renal BMP-7 expression and decreasing the high glucose-induced oxidative stress.
[1] Lehmann R, Schleicher ED (2000) Molecular mechanism of diabetic nephropathy. Clin Chim Acta 297: 135-144
[2] Schena FP, Gesualdo L (2005) Pathogenetic mechanisms of diabetic nephropathy. J Am Soc Nephrol 16 Suppl 1: S30-33
[3] Mauer SM, Steffes MW, Brown DM (1981) The kidney in diabetes. Am J Med 70: 603-612
[4] Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC (1984) Structural-functional relationships in diabetic nephropathy. J Clin Invest 74: 1143-1155
[5] Mogensen CE, Christensen CK, Vittinghus E (1983) The stages in diabetic renal disease. With emphasis on the stage of incipient diabetic nephropathy. Diabetes 32 Suppl 2: 64-78
[6] Ceol M, Nerlich A, Baggio B, Anglani F, Sauer U, Schleicher E, Gambaro G (1996) Increased glomerular alpha 1 (IV) collagen expression and deposition in long-term diabetic rats is prevented by chronic glycosaminoglycan treatment. Lab Invest 74: 484-495
[7] Lee HB, Yu MR, Yang Y, Jiang Z, Ha H (2003) Reactive oxygen species-regulated signaling pathways in diabetic nephropathy. J Am Soc Nephrol 14: S241-245
[8] Association AD (1998) Diabetic nephropathy. Diabetes Care 21: S50-53
[9] Leask A, Abraham DJ (2004) TGF-beta signaling and the fibrotic response. FASEB J 18: 816-827
[10] Ziyadeh FN (2004) Mediators of diabetic renal disease: the case for tgf-Beta as the major mediator. J Am Soc Nephrol 15 Suppl 1: S55-57
[11] Schiffer M vGG, Bitzer M, Susztak K, Böttinger EP. (2000) Smad proteins and transforming growth factor-beta signaling. Kidney Int 77: S45-52
[12] Hayashida T, Schnaper HW (2004) High ambient glucose enhances sensitivity to TGF-beta1 via extracellular signal--regulated kinase and protein kinase Cdelta activities in human mesangial cells. J Am Soc Nephrol 15: 2032-2041
[13] Kolm-Litty V, Sauer U, Nerlich A, Lehmann R, Schleicher ED (1998) High glucose-induced transforming growth factor beta1 production is mediated by the hexosamine pathway in porcine glomerular mesangial cells. J Clin Invest 101: 160-169
[14] Wolf G (2006) Renal injury due to renin-angiotensin-aldosterone system activation of the transforming growth factor-beta pathway. Kidney Int 70: 1914-1919
[15] Oh JH, Ha H, Yu MR, Lee HB (1998) Sequential effects of high glucose on mesangial cell transforming growth factor-beta 1 and fibronectin synthesis. Kidney Int 54: 1872-1878
[16] Kanwar YS, Wada J, Sun L, Xie P, Wallner E.I., Chen S, Chugh S, Danesh F.R. (2008) Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood) 233: 4-11
[17] Cohen MP, Klein CV (1979) Glomerulopathy in rats with streptozotocin diabetes. Accumulation of glomerular basement membrane analogous to human diabetic nephropathy. J Exp Med 149: 623-631
[18] De Petris L, Hruska KA, Chiechio S, Liapis H (2007) Bone morphogenetic protein-7 delays podocyte injury due to high glucose. Nephrol Dial Transplant 22: 3442-3450
[19] Fiordaliso F, Leri A, Cesselli D, et al. Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B, Anversa P, Kajstura J (2001) Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 50: 2363-2375
[20] Hoffman BB, Sharma K, Zhu Y, Ziyadeh FN (1998) Transcriptional activation of transforming growth factor-beta1 in mesangial cell culture by high glucose concentration. Kidney Int 54: 1107-1116
[21] Cortes P, Riser BL, Asano K, Rodriguez-Barbero A, Narins RG, Yee J (1998) Effects of oral antihyperglycemic agents on extracellular matrix synthesis by mesangial cells. Kidney Int 54: 1985-1998
[22] Khera T, Martin J, Riley S, Steadman R, Phillips AO (2006) Glucose enhances mesangial cell apoptosis. Lab Invest 86: 566-577
[23] Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813-820
[24] Djordjevic VB (2004) Free radicals in cell biology. Int Rev Cytol 237: 57-89
[25] Koya D, Hayashi K, Kitada M, Kashiwagi A, Kikkawa R, Haneda M (2003) Effects of antioxidants in diabetes-induced oxidative stress in the glomeruli of diabetic rats. J Am Soc Nephrol 14: S250-253
[26] Kang D, Hamasaki N (2003) Mitochondrial oxidative stress and mitochondrial DNA. Clin Chem Lab Med 41: 1281-1288
[27] Gill PS, Wilcox CS (2006) NADPH oxidases in the kidney. Antioxid Redox Signal 8: 1597-1607
[28] Li JM, Shah AM (2003) ROS generation by nonphagocytic NADPH oxidase: potential relevance in diabetic nephropathy. J Am Soc Nephrol 14: S221-226
[29] Pacher P, Obrosova IG, Mabley JG, Szabo C (2005) Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Curr Med Chem 12: 267-275
[30] Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Annu Rev Med 46: 223-234
[31] Shah SV, Baliga R, Rajapurkar M, Fonseca VA (2007) Oxidants in chronic kidney disease. J Am Soc Nephrol 18: 16-28
[32] Ha H, Lee HB (2005) Reactive oxygen species amplify glucose signalling in renal cells cultured under high glucose and in diabetic kidney. Nephrology (Carlton) 10 Suppl: S7-10
[33] Ha H, Lee HB (2000) Reactive oxygen species as glucose signaling molecules in mesangial cells cultured under high glucose. Kidney Int Suppl 77: S19-25
[34] Kwan J, Wang H, Munk S, Xia L, Goldberg HJ, Whiteside CI (2005) In high glucose protein kinase C-zeta activation is required for mesangial cell generation of reactive oxygen species. Kidney Int 68: 2526-2541
[35] Bailey J (2007) ACE inhibitors vs. ARBs for patients with diabetic kidney disease. Am Fam Physician 76: 68-69
[36] Yamagishi S, Fukami K, Ueda S, Okuda S (2007) Molecular mechanisms of diabetic nephropathy and its therapeutic intervention. Curr Drug Targets 8: 952-959
[37] Ohkubo YK, H. Araki, E. Miyata, T. Isami, S., Motoyoshi S, Kojima Y, Furuyoshi N, Shichiri M (1995) Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 28: 103-117
[38] Ruggenenti P, Fassi A, Ilieva AP, Bruno S, Iliev IP, Brusegan V, Rubis N, heradi G, Arnoldi F, Ganeva M, Ene-Iordache B, Gaspari F, Perna A, Bossi A, Trevisan R, Dodesini AR, Remuzzi G (2004) Preventing microalbuminuria in type 2 diabetes. N Engl J Med 351: 1941-1951
[39] Fried LF, Orchard TJ, Kasiske BL (2001) Effect of lipid reduction on the progression of renal disease: a meta-analysis. Kidney Int 59: 260-269
[40] Ha H, Yu MR, Kim KH (1999) Melatonin and taurine reduce early glomerulopathy in diabetic rats. Free Radic Biol Med 26: 944-950
[41] Li X, Hu J, Zhang R, Sun X, Zhang Q, Guan X, Chen J, Zhu Q, Li S (2008) Urocortin ameliorates diabetic nephropathy in obese db/db mice. Br J Pharmacol 154: 1025-1034
[42] Melhem MF, Craven PA, Derubertis FR (2001) Effects of dietary supplementation of alpha-lipoic acid on early glomerular injury in diabetes mellitus. J Am Soc Nephrol 12: 124-133
[43] Urist MR (1965) Bone: formation by autoinduction. Science 150: 893-899
[44] Sampath TK, Coughlin JE, Whetstone RM, Banach D, Corbett C, Ridge RJ, Ozkaynak E, Oppermann H, Rueger DC (1990) Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor-beta superfamily. J Biol Chem 265: 13198-13205
[45] Wang SN, Lapage J, Hirschberg R (2001) Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy. J Am Soc Nephrol 12: 2392-2399
[46] Wetzel P, Haag J, Campean V, Goldschmeding R, Atalla A, Amann K, Aigner T (2006) Bone morphogenetic protein-7 expression and activity in the human adult normal kidney is predominantly localized to the distal nephron. Kidney Int 70: 717-723
[47] Kitten AM, Kreisberg JI, Olson MS (1999) Expression of osteogenic protein-1 mRNA in cultured kidney cells. J Cell Physiol 181: 410-415
[48] Simic P, Vukicevic S (2005) Bone morphogenetic proteins in development and homeostasis of kidney. Cytokine Growth Factor Rev 16: 299-308
[49] Wang S, de Caestecker M, Kopp J, Mitu G, Lapage J, Hirschberg R (2006) Renal bone morphogenetic protein-7 protects against diabetic nephropathy. J Am Soc Nephrol 17: 2504-2512
[50] Kopp JB (2000) BMP receptors in kidney. Kidney Int 58: 2237-2238
[51] Lund RJ, Davies MR, Hruska KA (2002) Bone morphogenetic protein-7: an anti-fibrotic morphogenetic protein with therapeutic importance in renal disease. Curr Opin Nephrol Hypertens 11: 31-36
[52] Mitu G, Hirschberg R (2008) Bone morphogenetic protein-7 (BMP7) in chronic kidney disease. Front Biosci 13: 4726-4739
[53] Wang S, Chen Q, Simon TC, Strebeck F, Chaudhary L, Morrissey J, Liapis H, Klahr S, Hruska KA (2003) Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int 63: 2037-2049
[54] Yang Q, B. Han, R. J. Xie, M. L. Cheng (2007) Changes of bone morphogenetic protein-7 and inhibitory Smad expression in streptozotocin-induced diabetic nephropathy rat kidney. Sheng Li Xue Bao 59: 190-196
[55] Yamashita S, Maeshima A, Kojima I, Nojima Y (2004) Activin A is a potent activator of renal interstitial fibroblasts. J Am Soc Nephrol 15: 91-101
[56] Vukicevic S, Basic V, Rogic D, Basic N, Shih MS, Shepard A, Jin D, Dattatreyamurty B, Jones W, Dorai H, Ryan S, Griffitths D, Maliakal J, Jelic M, Pastorcic M, Stavljenic A, Sampath TK (1998) Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J Clin Invest 102: 202-214
[57] Zeisberg M, Bottiglio C, Kumar N, Maeshima Y, Strutz F, Muller GA, Kalluri R (2003) Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am J Physiol Renal Physiol 285: F1060-1067
[58] Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9: 964-968
[59] Sugimoto H, Grahovac G, Zeisberg M, Kalluri R (2007) Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes 56: 1825-1833
[60] Mitu GM, Wang S, Hirschberg R (2007) BMP7 is a podocyte survival factor and rescues podocytes from diabetic injury. Am J Physiol Renal Physiol 293: F1641-1648
[61] Otani H, Otsuka F, Inagaki K, Takeda M, Miyoshi T, Suzuki J, Mukai T, Ogura T, Makino H (2007) Antagonistic effects of bone morphogenetic protein-4 and -7 on renal mesangial cell proliferation induced by aldosterone through MAPK activation. Am J Physiol Renal Physiol 292: F1513-1525
[62] Zeisberg M (2006) Bone morphogenic protein-7 and the kidney: current concepts and open questions. Nephrol Dial Transplant 21: 568-573
[63] Cox S, Harvey BK, Sanchez JF, Wang JY, Wang Y (2004) Mediation of BMP7 neuroprotection by MAPK and PKC in rat primary cortical cultures. Brain Res 1010: 55-61
[64] Wang M, Jia M (2002) Advances in the study on chemical constituents of Angelica dahurica. Zhong Yao Cai 25: 446-449
[65] Hatano R, Takano F, Fushiya S, Michimata M, Tanaka T, Kazama I, Suzuki M, Matsubara M (2004) Water-soluble extracts from Angelica acutiloba Kitagawa enhance hematopoiesis by activating immature erythroid cells in mice with 5-fluorouracil-induced anemia. Exp Hematol 32: 918-924
[66] Jeon YJ, Han SB, Ahn KS, Kim HM (2000) Differential activation of murine macrophages by angelan and LPS. Immunopharmacology 49: 275-284
[67] Chen X, Chen J, Zhang P, Du J (2006) Angelica stimulates proliferation of murine bone marrow mononuclear cells by the MAPK pathway. Blood Cells Mol Dis 36: 402-405
[68] Chor SY, Hui AY, To KF, Chan KK, Go YY, Chan HL, Leung WK, Sung JJ (2005) Anti-proliferative and pro-apoptotic effects of herbal medicine on hepatic stellate cell. J Ethnopharmacol 100: 180-186
[69] Zhang YW, Xie D, Chen YX, Zhang HY, Xia ZX (2006) Protective effect of Gui Qi mixture on the progression of diabetic nephropathy in rats. Exp Clin Endocrinol Diabetes 114: 563-568
[70] Zhang YW, Xie D, Xia B, Zhen RT, Liu IM, Cheng JT (2006) Suppression of transforming growth factor-beta1 gene expression by Danggui buxue tang, a traditional Chinese herbal preparation, in retarding the progress of renal damage in streptozotocin-induced diabetic rats. Horm Metab Res 38: 82-88
[71] Wojcikowski K, Johnson DW, Gobe G (2006) Herbs or natural substances as complementary therapies for chronic kidney disease: ideas for future studies. J Lab Clin Med 147: 160-166
[72] Wang H, Li J, Yu L, Zhao Y, Ding W (2004) Antifibrotic effect of the Chinese herbs, Astragalus mongholicus and Angelica sinensis, in a rat model of chronic puromycin aminonucleoside nephrosis. Life Sci 74: 1645-1658
[73] Cheng JT, Huang CC, Liu IM, Tzeng TF, Chang CJ (2006) Novel mechanism for plasma glucose-lowering action of metformin in streptozotocin-induced diabetic rats. Diabetes 55: 819-825
[74] Huang CJ, Liu IM, Cheng JT (2007) Increase of peroxisome proliferator-activated receptor delta gene expression in the lungs of streptozotocin-induced diabetic rats. Pulm Pharmacol Ther 20: 69-74
[75] Hsieh TJ, Zhang SL, Filep JG, Tang SS, Ingelfinger JR, Chan JS (2002) High glucose stimulates angiotensinogen gene expression via reactive oxygen species generation in rat kidney proximal tubular cells. Endocrinology 143: 2975-2985
[76] Anjaneyulu MC, K. (2004) Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 31: 244-248
[77] Mankhey RW, Bhatti F, Maric C (2005) 17beta-Estradiol replacement improves renal function and pathology associated with diabetic nephropathy. Am J Physiol Renal Physiol 288: F399-405
[78] Sharma S, Anjaneyulu M, Kulkarni SK, Chopra K (2006) Resveratrol, a polyphenolic phytoalexin, attenuates diabetic nephropathy in rats. Pharmacology 76: 69-75
[79] Ohga S, Shikata K, Yozai K, Okada S, Ogawa D, Usui H, Wada J, Shikata Y, Makino H (2007) Thiazolidinedione ameliorates renal injury in experimental diabetic rats through anti-inflammatory effects mediated by inhibition of NF-kappaB activation. Am J Physiol Renal Physiol 292: F1141-1150
[80] Iglesias-De La Cruz MC, Ruiz-Torres P, Alcami J, Diez-Marques L, Ortega-Velazquez R, Chen S, Rodriguez-Puyol M, Ziyadeh FN, Rodriguez-Puyol D (2001) Hydrogen peroxide increases extracellular matrix mRNA through TGF-beta in human mesangial cells. Kidney Int 59: 87-95
[81] Xia L, Wang H, Goldberg HJ, Munk S, Fantus IG, Whiteside CI (2006) Mesangial cell NADPH oxidase upregulation in high glucose is protein kinase C dependent and required for collagen IV expression. Am J Physiol Renal Physiol 290: F345-356
[82] Portero-Otin M, Pamplona R, Boada J, Jove M, Gonzalo H, Buleon M, Linz W, Schafer S, Tack I, Girolami JP (2008) Inhibition of renin angiotensin system decreases renal protein oxidative damage in diabetic rats. Biochem Biophys Res Commun 368: 528-535
[83] McCance RA, Widdowson EM (1939) Functional disorganization of the kidney in disease. J Physiol 95: 36-44
[84] Klahr S, Morrissey J (2003) Obstructive nephropathy and renal fibrosis: The role of bone morphogenic protein-7 and hepatocyte growth factor. Kidney Int Suppl: S105-112
[85] Hruska KA, Guo G, Wozniak M, Martin D, Miller S, Liapis H, Loveday K, Klahr S, Sampath TK, Morrissey J (2000) Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am J Physiol Renal Physiol 279: F130-143
[86] Ikeda Y, Jung YO, Kim H, Oda T, Lopez-Guisa J, Maruvada R, Diamond DL, Martin KJ, Wing D, Cai X, Eddy AA (2004) Exogenous bone morphogenetic protein-7 fails to attenuate renal fibrosis in rats with overload proteinuria. Nephron Exp Nephrol 97: e123-135
[87] Hawkins M, Hu M, Yu J, Eder H, Vuguin P, She L, Barzilai N, Leiser M, Backer JM, Rossetti L (1999) Discordant effects of glucosamine on insulin-stimulated glucose metabolism and phosphatidylinositol 3-kinase activity. J Biol Chem 274: 31312-31319
[88] Heygate KM, Davies J, Holmes M, James RF, Thurston H (1996) The effect of insulin treatment and of islet transplantation on the resistance artery function in the STZ-induced diabetic rat. Br J Pharmacol 119: 495-504
[89] Li XS, Tanz RD, Chang KS (1989) Effect of age and methacholine on the rate and coronary flow of isolated hearts of diabetic rats. Br J Pharmacol 97: 1209-1217
[90] Flyvbjerg A, Gronbaek H, Bak M, Neilsen B, Christiansen T, Hill C, Logan A, Orskov H (1998) Diabetic kidney disease: the role of growth factors. Nephrol Dial Transplant 13: 1104-1107
[91] Sharma K, Ziyadeh FN (1995) Hyperglycemia and diabetic kidney disease. The case for transforming growth factor-beta as a key mediator. Diabetes 44: 1139-1146
[92] Rocco MV, Chen Y, Goldfarb S, Ziyadeh FN (1992) Elevated glucose stimulates TGF-beta gene expression and bioactivity in proximal tubule. Kidney Int 41: 107-114
[93] Osterby R, Schmitz A, Nyberg G, Asplund J (1998) Renal structural changes in insulin-dependent diabetic patients with albuminuria. Comparison of cases with onset of albuminuria after short or long duration. APMIS 106: 361-370
[94] Wang S, Hirschberg R (2003) BMP7 antagonizes TGF-beta -dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol 284: F1006-1013
[95] Daniels MC, McClain DA, Crook ED (2000) Transcriptional regulation of transforming growth factor beta1 by glucose: investigation into the role of the hexosamine biosynthesis pathway. Am J Med Sci 319: 138-142
[96] Liu Y (2004) Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J Am Soc Nephrol 15: 1-12
[97] Chan WL, Leung JC, Chan LY, Tam KY, Tang SC, Lai KN (2008) BMP-7 protects mesangial cells from injury by polymeric IgA. Kidney Int 74:1026-39
[98] Miyazono K, Maeda S, Imamura T (2005) BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 16: 251-263
[99] Wang S, Hirschberg R (2004) Bone morphogenetic protein-7 signals opposing transforming growth factor beta in mesangial cells. J Biol Chem 279: 23200-23206
[100] Baker AJ, Mooney A, Hughes J, Lombardi D, Johnson RJ, Savill J (1994) Mesangial cell apoptosis: the major mechanism for resolution of glomerular hypercellularity in experimental mesangial proliferative nephritis. J Clin Invest 94: 2105-2116
[101] Sugiyama H, Kashihara N, Makino H, Yamasaki Y, Ota A (1996) Apoptosis in glomerular sclerosis. Kidney Int 49: 103-111
[102] Ziyadeh FN, Hoffman BB, Han DC, Iglesias-De La Cruz MC, Hong SW, Isono M, Chen S, McGowan TA, Sharma K. (2000) Long-term prevention of renal insufficiency, excess matrix gene expression, and glomerular mesangial matrix expansion by treatment with monoclonal antitransforming growth factor-beta antibody in db/db diabetic mice. Proc Natl Acad Sci U S A 97: 8015-8020
[103] Ha H, Lee SH, Kim KH (1997) Effects of rebamipide in a model of experimental diabetes and on the synthesis of transforming growth factor-beta and fibronectin, and lipid peroxidation induced by high glucose in cultured mesangial cells. J Pharmacol Exp Ther 281: 1457-1462
[104] Tsilibary EC (2003) Microvascular basement membranes in diabetes mellitus. J Pathol 200: 537-546
[105] Qian Y, Feldman E, Pennathur S, Kretzler M, Brosius FC, 3rd (2008) From fibrosis to sclerosis: mechanisms of glomerulosclerosis in diabetic nephropathy. Diabetes 57: 1439-1445
[106] Ebara S, Nakayama K (2002) Mechanism for the action of bone morphogenetic proteins and regulation of their activity. Spine 27: S10-15
[107] Heyman SN, Khamaisi M, Rosen S, Rosenberger C (2008) Renal parenchymal hypoxia, hypoxia response and the progression of chronic kidney disease. Am J Nephrol 28: 998-1006
[108] Inoguchi T, Sonta T, Tsubouchi H, Etoh T, Kakimoto M, Sonoda N, Sato N, Selkiguchi N, Kobayashi K, Sumimoto H, Utsumi H, Nawa H (2003) Protein kinase C-dependent increase in reactive oxygen species (ROS) production in vascular tissues of diabetes: role of vascular NAD(P)H oxidase. J Am Soc Nephrol 14: S227-232
[109] Tsai MJ, Weng CF, Shyue SK, Liou DY, Chen CH, Chiu CW, Yang TH, Pan HA, Liao RI, Kuo HS, Huang MC, Huang WC, Hoffer BJ, Chneg H (2007) Dual effect of adenovirus-mediated transfer of BMP7 in mixed neuron-glial cultures: neuroprotection and cellular differentiation. J Neurosci Res 85: 2950-2959
[110] Yeh CH, Chang CK, Cheng MF, Lin HJ, Cheng JT (2009) Decrease of bone morphogenetic protein-7 (BMP-7) and its type II receptor (BMP-RII) in kidney of streptozotocin-induced diabetic rats. Hormone and Metabolic Research (In Press)
[111] Yeh CH, Chang CK, Cheng MF, Lin HJ, Cheng JT (2009) The antioxidative effect of bone morphogenetic protein-7 against high glucose-induced oxidative stress in mesangial cells. Biochem Biophys Res Commun 382:292-297
[112] Wu SJ, Ng LT, Lin CC (2004) Antioxidant activities of some common ingredients of Traditional Chinese Medicine, Angelica sinensis, Lycium barbarum and Poria cocos. Phytother Res 18: 1008-1012
[113] Kuang X, Yao Y, Du JR, Liu YX, Wang CY, Qian ZM (2006) Neuroprotective role of Z-ligustilide against forebrain ischemic injury in ICR mice. Brain Res 1102: 145-153
[114] Yu Y, Du JR, Wang CY, Qian ZM (2008) Protection against hydrogen peroxide-induced injury by Z-ligustilide in PC12 cells. Exp Brain Res 184: 307-312
[115] Li SY, Yu Y, Li SP (2007) Identification of antioxidants in essential oil of radix Angelicae sinensis using HPLC coupled with DAD-MS and ABTS-based assay. J Agric Food Chem 55: 3358-3362
[116] Kanski J, Aksenova M, Stoyanova A, Butterfield DA (2002) Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J Nutr Biochem 13: 273-281
[117] Zhang Z, Wei T, Hou J, Li G, Yu S, Xin W (2003) Iron-induced oxidative damage and apoptosis in cerebellar granule cells: attenuation by tetramethylpyrazine and ferulic acid. Eur J Pharmacol 467: 41-47
[118] Yang X, Zhao Y, Lv Y, Yang Y, Ruan Y (2007) Protective effect of polysaccharide fractions from Radix A. sinensis against tert-butylhydroperoxide induced oxidative injury in murine peritoneal macrophages. J Biochem Mol Biol 40: 928-935
[119] Yang X, Zhao Y, Zhou Y, Lv Y, Mao J, Zhao P (2007) Component and antioxidant properties of polysaccharide fractions isolated from Angelica sinensis (OLIV.) DIELS. Biol Pharm Bull 30: 1884-1890