| 研究生: |
方嘉鋒 Fang, Jia-Feng |
|---|---|
| 論文名稱: |
奈米結構硒化鋅/銅銦鎵硒太陽能電池製作於透明導電基板之研究 Study of nano-structured ZnSe/CuInGaSe2 solar cells fabricated on transparent conductive substrate |
| 指導教授: |
彭洞清
Perng, Dung-Ching |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 162 |
| 中文關鍵詞: | 超基板 、兩階段硒化 、銅銦鎵硒 、奈米線 |
| 外文關鍵詞: | superstrate, two-step selenization, CuInGaSe2, nanowire |
| 相關次數: | 點閱:118 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要探討在超基板(superstrate)上以兩階段硒化製程形成奈米結構之氧化鋅(或硒化鋅)結合二硒化銅銦鎵異質接面太陽能電池。內容主要分為三個部分,第一個部分是氧化鋅摻鋁的玻璃基板上沉積銅銦金屬先驅物進行兩階段硒化形成二硒化銅銦超基板結構。其中,對於二硒化銅銦所形成的結晶相有深入探討。在第二部分我們應用兩階段硒化來形成硒化鋅包覆氧化鋅的奈米結構鑲嵌在二硒化銅銦吸收層的異質接面太陽能電池。最後,經由改善前面製程堆疊與摻雜鎵到吸收層中來增加奈米結構硒化鋅/二硒化銅銦鎵太陽能電池的轉換效率。
在第一部分我們發現以硒化方式在超基板結構上形成二硒化銅銦的結晶相有別於傳統基板結構。文獻記載(220/204)結晶相有較(112)結晶相還要高的光電響應。因此我們對於該形成之(112)與(220/204)結晶相有深入探討。第一階段以400 oC 硒化,隨著時間的增加二硒化銅銦會趨向於(112)的結晶相,而在第二階段以高於550 oC 與在高的硒蒸氣壓力下二硒化銅銦會趨向於(220/204)的結晶相。探究其原因在於超基板結構因為是以透明氧化導電薄膜當基板,當硒化進行中金屬先驅物的銦會與氧發生作用產生氧化銦。隨著硒化時間增加,氧化銦逐漸會被轉換成(300)結晶相的硒化銦。而(300)結晶相的硒化銦與(220/204)結晶相的二硒化銅銦結構相仿。因此,銦被氧化再轉換成硒化銦的過程幫助了(220/204)結晶相的二硒化銅銦成長。硒化過程會發現銅由於與硒的鍵結能較低,因此銅會偏向表面聚集形成銅偏多的(112)結晶相二硒化銅銦。因此,我們藉由在銅偏多的金屬先驅物沉積後在其上方多沉積一層銦當做金屬先驅物。以此堆疊的先驅物更能成長出(220/204)結晶相的二硒化銅銦。
第二部分我們在超基板結構上製作氧化鋅奈米線隨後以共濺鍍沉積銅銦金屬先驅物。藉由兩階段硒化氧化鋅表面會被轉換成硒化鋅而形成硒化鋅包覆氧化鋅奈米結構鑲嵌於二硒化銅銦的太陽能電池。隨著奈米線的稀疏度與長度不同會影響到光的吸收及轉換效率。在本研究中所製作出來的奈米硒化鋅/二硒化銅銦結構與平面結構太陽能電池相比有較高的光電流產生,而該元件也有1.79%的轉換效率。我們推測該元件效率低的原因可能是硒化過程中殘存的高阻抗氧化鋅造成元件效率不高。
為了增加奈米結構的轉換效率我們將氧化鋅緩衝層厚度降低,在二硒化銅銦吸收層中摻雜鎵來達到較佳的能隙匹配。最後形成奈米結構硒化鋅/二硒化銅銦鎵太陽能電池,而該元件轉換效率提升至3.54 %。
This dissertation investigates the nano-structured n-type ZnO (or ZnSe)/p-type Cu(InGa)Se2-based solar cells which fabricated by two-step selenization with superstrate configuration. The contents are primary divided into three distinct subjects. In the first subject, we investigate the (112) and (220/204)-preferred CuInSe2 films on Al doped ZnO coated glass substrate (superstrate) by two-step selenization. In the second subject, superstrate type nano-structured solar cells with ZnSe/ZnO coaxial nanowires embedded in the CuInSe2 layer are presented. Eventually, nano-structured ZnSe/CuInGaSe2 solar cells with superstrate configuration are performed.
The (112) and (220/204)-preferred CuInSe2 films formed using a two-step selenization process is reported, and the growth mechanism is explained. The selenization temperature, Se vapor pressure, and reactive mechanisms of each selenization step were investigated. The first-step selenization at 400 oC favors CuInSe2 (112) growth as the selenization time increases. For the second-step selenization, a high temperature (≧550 oC) and high Se vapor pressure throughout the process have a strong influence in promoting CuInSe2 (220/204) growth. The oxygen in the self-formed In2O3 layer at the Al:ZnO interface can be replaced by selenium, and transforms to an In2Se3 (300)-preferred film, which favors CuInSe2 (220/204) formation, in a transient and high Se vapor pressure selenization process. A Cu-rich surface, which is the usual case for selenizing precursor and which favors CuInSe2 (112) growth, can be optimized to promote CuInSe2 (220/204) growth by adding a thin In layer onto a slightly Cu-rich Cu/In precursor.
In the second subject, superstrate-type nano-structured solar cells with ZnSe/ZnO coaxial nanowires embedded in the CuInSe2 layer are presented. The Cu/In precursors were deposited on ZnO nanowires/ZnO buffer (100 nm)/ITO/glass substrate in which the ZnO nanowires prepared by chemical-electrically deposition. Complete filling of the CuInSe2 film into the narrow spaces between the ZnO nanowires was realized by growing the nanowires sparsely. The ZnSe/CuInSe2 heterojunction was self-formed by converting a skin (~50 nm) layer of ZnO after the selenization. The influences of the nanowire length and density on light trapping and on cell conversion efficiency have been investigated. A 30% improvement in Jsc and higher efficiency has been achieved by embedding nanowires in the CuInSe2 layer. Conversion efficiency of 1.79 % was obtained from a ZnSe/CuInSe2 heterojunction solar cell fabricated on sparse ZnO nanowires with Voc = 599 mV, Jsc= 11.60 mA/cm2 and 25.71 % fill factor.
In the third part of this dissertation, the optimized film stack and absorber fabrication were investigated. In order to enhance photo generated current collection and reduce carrier loss in the ZnO buffer layer. A thin ZnO buffer (or sacrificing) layer with 50 nm was deposited on ITO substrate. To decrease the conduction band offset ΔEC, the element of Ga was doped into CuInSe2 film. Finally, the nano-structured ZnSe nanowires/CuInGaSe2 solar cells with superstrate configuration are studies. The ZnSe nanowires were transformed from electrochemically deposited ZnO nanowires after selenization. An incomplete selenization of the ZnO buffer layer caused the high series resist and decreased the cell performance. Fully converted ZnSe from ZnO nanowires embedded in CuInGaSe2 enhanced the light trapping at the PN junction and improved carrier collection efficiency, and it generated an open circuit voltage of 449 mV, a current density of 14.43 mA/cm2, a fill factor of 54.7 % and an efficiency of 3.54 %.
Chapter 1
1. ZSW press release 11/2010, New world record with efficient CIGS solar cell, Zentrum für Sonnenenergieund Wasserstoff-Forschung Baden-Württemberg (ZSW) Stuttgart, Germany, 23 August 2010.
2. T. Nakada, T. Kume, T. Mise and A. Kunioka, “Superstrate-type Cu(In,Ga)Se2 thin film solar cells with ZnO buffer layers”, Japanese Journal of Applied Physics, 37 (1998) L499-L501.
3. Y. Tak and K. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method”, Journal of Physical Chemistry B, 109 (2005) 19263-19269.
4. K.S. Kim and H.W. Kim, “Synthesis of ZnO nanorod on bare Si substrate using metal organic chemical vapor deposition”, Physica B, 328 (2003) 368-371.
5. R. Liu, A.A. Vertegel, E.W. Bohannan, T.A. Sorenson and J.A. Switzer, “Epitaxial electrodeposition of zinc oxide nanopillars on single-crystal gold”, Chemistry of Materials, 13 (2001) 508-512.
Chapter 2
1. P. Bhattacharya, “Semiconductor optoelectronic Devices”, Prentice-Hall Upper Saddle River, New Jersey (1996).
2. Möller, Hans J., “Semiconductors for Solar Cells”, Artech House, Boston Massachusetts (1993).
3. M.A. Green, “Solar Cells”, Prentice Hall, Englewood Cliff, New Jersey (1982).
4. J. Nelson, “The Physics of Solar Cells”, Imperial College Press, World Scientific Publishing Co. Pte. Ltd, Singapore (2003).
Chapter 3
1. D.M. Chapin, C.S. Fuller and G.L. Pearson, “A new silicon pn junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, 25 (1954) 676-677.
2. S. Wagner, J.L. Shay, P. Migliorato and H.M. Kasper, “CuInSe/CdS heterojunction photovoltaic detectors”, Applied Physics Letters, 25 (1974) 434-435.
3. J.L. Shay, S. Wagner and H.M. Kasper, “Efficient CuInSe/sub 2/CdS solar cells”, Applied Physics Letters, 27 (1975) 89-90.
4. ZSW press release 11/2010, New world record with efficient CIGS solar cell, Zentrum für Sonnenenergieund Wasserstoff-Forschung Baden-Württemberg (ZSW) Stuttgart, Germany, 23 August 2010.
5. W. Hörig, H. Neumann, H. Sobotta, B. Schumann and G. Kühn, “The optical properties of CuInSe2 thin films”, Thin Solid Films, 48 (1978) 67-72.
6. L.L. Kazmerski, M. Hallerdt, P.J. Ireland, R.A. Mickelsen and W.S. Chen, “Optical properties and grain boundary effects in CuInSe2”, Journal of Vacuum Science & Technology A, 1 (1983) 395-398.
7. M.L. Fearheily, “The phase relations in the Cu, In, Se system and the growth of CuInSe2 single crystals, Solar Cells, 16 (1986) 91-100.
8. S.B. Zhang, S.H. Wei and A. Zunger, “Stabilization of ternary compounds via ordered arrays of defect pairs”, Physical Review Letters, 78 (1997) 4059-4062.
9. R. Noufi, R. Axton, C. Herrington and S.K. Deb, “Electronic properties versus composition of thin films of CuInSe2”, Applied Physics Letters, 45 (1984) 668-670.
10. D.S. Albin, J.R. Tuttle, G.D. Mooney, J.J. Carapella, A. Duda, A. Mason and R. Noufi, “A study on the optical and microstructural characteristics of quaternary Cu(In,Ga)Se2 polycrystalline thin films”, Proceeding of the 21st IEEE photovoltaic specialists conference (1990) 562-569.
11. A. Luque and S. Hegedus, “Handbook of photovoltaic science and engineering”, John Wiley & Sons Ltd, England (2003).
12. J.S. Chen, E. Kolawa, C.M. Garland, M.-A. Nicolet and R.P. Ruiz, “Microstructure of polycrystalline CuInSe2/Cd(Zn)S heterojunction solar cells”, Thin Solid Films, 219 (1992) 183-192.
13. F. Kessler and D. Rudmann, “Technological aspects of flexible CIGS solar cells and modules”, Solar Energy, 77 (2004) 685-695.
14. K.-H. Müller, “Elemental analysis of surfaces and thin films”, Thin Solid Films, 174 (1989) 117-132.
15. J. Hedström, H. Ohlsen, M. Bodegard, A. Kylner, L. Stolt, D. Hariskos, M. Ruckh and H.-W. Schock, “ZnO/CdS/Cu(In,Ga)Se2 thin film solar cells with improved performance”, Proceeding of the 23rd IEEE Photovoltaic Specialist Conference (1993) 364-371.
16. M. Bodegård, L. Stolt and J. Hedström, “The influence of sodium on the grain structure of CuInSe2 films for photovoltaic applications”, Proceeding of the 12th European Conference on Photovoltaic Solar Energy Conversion (1994) 1743.
17. M. Bodegård, K. Granath, L. Stolt and A. Rockett, “The behavior of Na implanted into Mo thin films during annealing”, Solar Energy Material & Solar Cells, 58 (1999) 199-208.
18. S.H. Wei, S.B. Zhang and A. Zunger, “Effect of Na on the electrical and structural properties of CuInSe2”, Journal of Applied Physics, 85 (1999) 7214-7218.
19. J.H. Scofied, A. Duda, D. Albin, B.L. Ballard and P.K. Predecki, “Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells”, Thin Solid Films, 260 (1995) 26-31.
20. I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor”, Progress in Photovoltaics: Research and Applications, 16 (2008) 235-239.
21. J. Kessler, D. Schmid, S. Zweigart, H. Dittrich and H.W. Schock, “CuInSe2 film formation from sequential depositions of In(Se):Cu:Se”, Proceeding of the 12th European Conference of Photovoltaic Solar Conversion (1994) 648.
22. A.M. Gabor, J.R. Tuttle, D.S. Albin, M.A. Contreras, R. Noufi and A.M. Hermann, “High-efficiency CuInxGa1-xSe2 solar cells made from (Inx,Ga1-x)2Se3 precursor films”, Applied Physics Letter, 65 (1994) 198-200.
23. A.M. Gabor, J.R. Tuttle, M.H. Bode, A. Franz, A.L. Tennant, M.A. Contreras, R. Noufi, D.G. Jensen and A.M. Hermann, “Band-gap engineering in Cu(In,Ga)Se2 thin films grown from (In,Ga)2Se3 precursors”, Solar Ennergy Materials & Solar Cells, 41-42 (1996) 247-260.
24. F.S. Hasoon, Y. Yan, H. Althani, K.M. Jones, H.R. Moutinho, J. Alleman, M.M. Al-Jassim and R. Noufi, “Microstructural properties of Cu(In,Ga)Se2 thin films used in high-efficiency devices”, Thin Solid Films, 387 (2001) 1-5.
25. M. Kaelin, D. Rudmann and A.N. Tiwari, “Low cost processing of CIGS thin film solar cells”, Solar Energy, 77 (2004) 749-756.
26. R. Caballero, C. Guillén, M.T. Gutiérrez and C.A. Kaufmann, “CuIn1-xGaxSe2-based thin-film solar cells by the selenization fo sequentially evaporated metallic layers”, Progress in Photovoltaics: Research & Applications, 14 (2006) 145-153.
27. W. Li, Y. Sun, W. Liu and L. Zhou, “Fabrication of Cu(In,Ga)Se2 thin films solar cell by selenization process with Se vapor”, Solar Energy, 80 (2006) 191-195.
28. P.K. Johnson, J.T. Heath, J.D. Cohen, K. Ramanathan and J.R. Sites, “A comparative study of defect states in evaporated and selenized CIGS(S) solar cells”, Progress in Photovoltaics: Research & Applications, 13 (2005) 579-586.
29. R.J. Cashman, “New photoconductive cells”, Journal of the Optical Society of America, 36 (1946) 356.
30. G.A. Kitaev, A.A. Uritakaya and S.S. Mokrushin, “Conditions for the chemical deposition of thin films of cadmium sulfide on a solid surface”, Russian Journal of Physical Chemistry, 39 (1965) 1101.
31. R.C. Kainthla, D.K. Pandya and K.L. Chopra, “Solution growth of CdSe and PbSe films”, Journal of The Electrochemical Society, 127 (1980) 277-283.
32. J. Nelson, “The physics of solar cells”, Imperial College Press, London (2003).
33. T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, and M. Kitagawa, “Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation”, Solar Energy Materials & Solar Cells, 67 (2001) 83-88.
Chapter 4
1. A.J. Bard and L.R. Faulkner, “Electrochemical Methods: Fundamentals and Applications, 2nd”, John Wiley & Sons, New York (2000).
2. G. C. Schwartz and K. V. Srikrishnam, “Handbook of semiconductor interconnection technology, 2nd”, CRC/Taylor & Francis, FL (2006).
3. L.I Maissel and R. Glang, “Handbook of thin film technology”, McGraw-Hill, New York (1970).
4. H. Buert and H. Jenett, “Surface and thin film analysis: A compendium of principles, instrumentation, applications”, Wiley-VCH, Weinheim (2002).
5. O.C. Wells, “Scanning electron microscopy”, McGraw-Hill, New York (1974).
6. M. Birkholz, “Thin film analysis by X-ray scattering”, Wiley-VCH, Weinheim, (2006).
7. K. Wetzig and C. M. Schneider, “Metal based thin films for electronics, 2nd”, Wiley-VCH, Weinheim, (2006).
Chapter 5
1. A. Parretta, M.L. Addonizio, S. Loreti, L. Quercia and M.K. Jayaraj, “An investigation on the growth of thin chalcopyrite CuInSe2 films by selenization of Cu-In alloys in a box”, Journal of Crystal Growth, 183 (1998) 196-204.
2. H.K. Song, S.G. Kim, H.J. Kim, S.K. Kim, K.W. Kang, J.C. Lee and K.H Yoon, “ Preparation of CuIn1-xGaxSe2 thin films by sputtering and selenization process”, Solar Energy Materials & Solar Cells, 75 (2003) 145-153.
3. R. Caballero and C. Guillen, “Optical and electrical properties of CuIn1-xGaxSe2 thin films obtained by selenization of sequentially evaporated metallic layers”, Thin Solid Films, 431-432 (2003) 200-204.
4. F.O. Adurodija, I. Forbes, M.J. Carter and R. Hill, “Production of high quality CuInSe2 thin films from magnetron sputtered ultrathin Cu-In multilayers”, Journal of Materials Science Letters, 15 (1996) 478-481.
5. S.D. Kim, H.J. Kim, K.H. Yoon and J. Song,” Effect of selenization pressure on CuInSe2 thin films selenized using co-sputtered Cu-In precursors, Solar Energy Materials & Solar Cells, 62 (2000) 357-368.
6. O. Volobujeva, M. Altosaar, J. Raudoja, E. Mellikov, M. Grossberg, L. Kaupmees and P. Barvinschi, “SEM analysis and selenization of Cu-In alloy films produced by co-sputtering of metals”, Solar Energy Materials & Solar Cells, 93 (2009) 11-14.
7. F.D. Jiang and J.Y. Feng, “Effect of temperature on selenization process of metallic CuIn alloy precursors”, Thin Solid Films, 515 (2006) 1950-1955.
8. T. Pisarkiewicz and H. Jankowski, “Vacuum selenization of metallic multilayers for CIS solar cells”, Vacuum, 70 (2003) 435-438.
9. F.O. Adurodija, J. Song, S.D. Kim, S.H. Kwon, S.K. Kim, K.H. Yoon and B.T. Ahn, “Growth of CuInSe2 thin films by high vapour Se treatment of co-sputtered Cu-In alloy in a graphite container”, Thin Solid Films, 338 (1999) 13-19.
10. F. Jiang and J. Feng, “Effect of temperature on selenization process of metallic Cu-In alloy precursors”, Thin Solid Films, 515 (2006) 1950-1955.
11. R.D. Heyding, “The copper/selenium system”, Canadian Journal of Chemistry, 44 (1966) 1233-1236.
12. K.G. Deepa, P.M.R. Kumar, C.S. Kartha and K.P. Vijayakumar, “Thermal diffusion of Cu into In2Se3: a better approach to SEL technique in the deposition of CuInSe2 thin films”, Solar Energy Materials & Solar Cells, 90 (2006) 3481-3490.
13. W.F. Gale and T.C. Totemeier, “Smithells Metal Reference Book, eighth ed.”, Elsevier Butterworth-Heinemann, USA, 2004.
14. A. Romeo, M. Terheggen, D. Abou-Ras, D.L. Batzner, F.-J. Haug, M. Kalin, D. Rudmann and A.N. Tiwari,” Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells”, Progress in Photovoltaics: Research and Applications, 12 (2004) 93-111.
15. T. Negami, Y. Hashimoto, M. Nishitani and T. Wada, “CuInS2 thin-films solar cells fabricated by sulfurization of oxide precursors”, Solar Energy Materials & Solar Cells, 49 (1997) 343-348.
16. M.E. Beck and M. Cocivera, “Reproducibility studies on thin-film copper indium diselenide prepared from copper indium oxide”, Journal of Materials Science, 32 (1997) 937-940.
17. F.K. Lotgering, “ Topotactical reactions with ferromagnetic oxides having hexagonal crystal structures-I”, Journal of Inorganic and Nuclear Chemistry, 9 (1959) 113-123.
18. F. Hergert, S. Jost, R. Hock and M. Purwins, “ A crystallographic description of experimentally identified formation reactions of Cu(In,Ga)Se2”, Journal of Solid State Chemistry, 179 (2006) 2394-2415.
19. T. Schlenker, M.L. Valero, H.W. Schock and J.H. Werner, “Grain growth studies of thin Cu(In,Ga)Se2 films”, Journal of Crystal Growth, 264 (2004) 178-183.
20. M.A. Contreras, K.M. Jones, L. Gedvilas and R. Matson, “Preferred orientation in polycrystalline Cu(In,Ga)Se2 and its effect on absorber thin-films and device”, 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow U.K., (2000) pp.732-735.
21. G. Hanna, J. Mattheis, V. Laptev, Y. Yamamoto, U. Rau and H.W. Schock, “Influence of the selenium flux on the growth of Cu(In,Ga)Se2 thin films, Thin Solid Films, 431 –432 (2003) 31-36.
22. M. Kaelin, D. Rudmann, F. Kurdesau, T. Meyer, H. Zogg and A.N. Tiwari, “CIS and CIGS layers from selenized nanoparticle precursors”, Thin Solid Films, 431 –432 (2003) 58-62.
23. J. Lopez-Garcia and C. Guillen, “Adjustment of the selenium amount provided during formation of CuInSe2 thin films from the metallic precursors”, Physica Status Solidi A, 206 (2009) 84-90.
24. J. H. Yoon, K.H. Toon, J.K. Kim, W.M. Kim, J.K. Park, T.S. Lee, Y.J. Baik, T.Y. Seong and J.H. Jeong, “Effect of the Mo back contact microstructure on the preferred orientation of CIGS thin films”, Proceedings of the 35st IEEE Photovoltaic Specialists Conference, Hawaii, June (2010) pp.2443-2447.
25. J. Schmidta, H.H. Roschera and R. Labuscha, “Preparation and properties of CuInSe2 thin films produced by selenization of co-sputtered Cu-In films”, Thin Solid Films, 251 (1994) 116-120.
26. S. Chaisitsak, A. Yamada and M. Konagai, “Preferred orientation control of Cu(In1-xGax)Se2 (x~0.28) thin films and its influence on solar cell characteristics”, Japanese Journal of Applied Physics, 41 (2002) 507-513.
27. M. Ruckh, J. Kessler, T.A. Oberacker and H.W. Schock, “Thermal decomposition of ternary chalcopyrite thin films”, Japanese Journal of Applied Physics, 32-3 (1993) 65-67.
28. M.A. Green, “Solar Cells: Operating Principles, Technology and System Applications”, Prentice-Hall, Englewood Cliffs, NJ, (1982).
Chapter 6
1. N.S. Lewis, “Toward cost-effective solar energy use”, Science, 315 (2007) 798-801.
2. K.L. Chopra, P.D. Paulson and V. Dutta, “Thin-film solar cells: an overview”, Progress in Photovoltaics: Research and Applications, 12 (2004) 69-92.
3. M. Konagai, “Deposition of new microcrystalline materials, μc-SiC, μc-GeC by HWCVD and solar cell applications”, Thin Solid Films, 516 (2008) 490-495.
4. L. Lu, R. Li, K. Fan and T. Peng, “Effects of annealing conditions on the photoelectrochemical properties of dye-sensitized solar cells made with ZnO nanoparticles”, Solar Energy, 84 (2010) 844-853.
5. G. Goncher and R. Solanki, “Semiconductor nanowire photovoltaics”, Proceeding of SPIE, 7047 (2008) 70470L-(1-14).
6. K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris and E.S. Aydil, “Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices”, Nano Letters, 7 (2007) 1793-1798.
7. B.M. Kayes and H.A. Atwater, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells”, Journal of Applied Physics, 97 (2005) 114302-(1-11).
8. J.A. Czabanet, D.A. Thompson and R.R. Lapierre, “GaAs core-shell nanowires for photovoltaic applications”, Nano Letters, 9 (2009) 148-154.
9. Z. Fan, H.Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates”, Nature Materials, 8 (2009) 648-653.
10. Y.J. Lee, D.S. Ruby, D.W. Peters, B.B. McKenzie and J.W.P. Hsu, “ZnO nanostructures as efficient antireflection layers in solar cells”, Nano Letters, 8 (2008) 1501-1505.
11. J. Zhu, Z. Yu, G.F. Burkhard, C.M. Hsu, S.T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays”, Nano Letters, 9 (2009) 279-282.
12. L.E. Greene, M. Law, B.D. Yuhas and P. Yang, “ZnO-TiO2 core-shell nanorod/P3HT solar cells”, Journal of Chemical Physics C, 111 (2007) 18451-18456.
13. T.J. Hsueh, C.L. Hsu, S.J. Chang, P.W. Guo, J.H. Hsieh and I.C. Chen, “Cu2O/n-ZnO nanowire solar cells on ZnO:Ga/glass templates”, Scripta Materialia, 57 (2007) 53-56.
14. B.D. Yuhas and P. Yang, “Nanowire-based all-oxide solar cells”, Journal of The American Chemical Society, 131 (2009) 3756-3761.
15. C. Burda, X. Chen, R. Narayanan and M.A.E. Sayed, “Chemistry and properties of nanocrystals of different shapes”, Chemical Reviews, 105 (2005) 1025-1102.
16. Y. Tak and K. Yong, “Controlled growth of well-aligned ZnO nanorod array using a novel solution method”, Journal of Chemical Physics B, 109 (2005) 19263-19269.
17. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Advanced Materials, 15 (2003) 464-466.
18. Z. Liu, L. E, J. Ya and Y. Xin, “Growth of ZnO nanorods by aqueous solution method with electrodeposited ZnO seed layers”, Applied Surface Science, 255 (2009) 6415-6420.
19. C. Gu, J. Li, J. Lian and G. Zheng, “Electrochemical synthesis and optical properties of ZnO thin film on In2O3:Sn (ITO)-coated glass”, Applied Surface Science, 253 (2007) 7011-7015.
20. J. Elias, R.T. Zaera and C.L. Clement, “Electrochemical deposition of ZnO nanowire arrays with tailored dimensions”, Journal of Electroanalytical Chemistry, 621 (2008) 171-177.
21. C.W. Wang, Z. Ji, J. Xi, J. Du and Z. Ye, “Fabrication and characteristics of the low-resistive p-type ZnO thin films by DC reactive magnetron sputtering”, Materials Letters, 60 (2006) 912-914.
22. L. Gao, Y. Zhang, J.M. Zhang and K.W. Xu, “Boron doped ZnO thin films fabricated by RF-magnetron sputtering”, Applied Surface Science, 257 (2011) 2498-2502.
23. H. Zhou, H. Alves, D.M. Hofmann, W. Kriegseis, B.K. Meyer, G. Kaczmarczyk and A. Hoffmann, “Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure”, Applied Physics Letters, 80 (2002) 210-212.
24. S. Fridjine, S. Touihri, K. Boubaker, M. Amlouk and S. Belgacem, “Structural and optical properties of (ZnO)x(ZnSe)y thin films for optoelectronic applications”, Physica Status Solidi C, 7 (2010) 2282-2285.
25. Y. Ohtake, K. Kushiya, A. Yamada and M. Konagai, “Development of ZnO/ZnSe/CuIn1-xGaxSe2 thin-film solar cells with band gap of 1.3 to 1.5 eV”, Proceeding of the 1st World Conference Photovoltaic Solar Energy Conversion (WCPEC), Hawaii (1994) pp.218-221.
26. F. Engelhardt, L. Bornemann, M. Kontges, T. Meyer, J. Parisi, E.P. Schoberer, B. Hahn, W. Gebhardt, W. Riedl and U. Rau, “Cu(In,Ga)Se2 solar cells with a ZnSe buffer layer: interface characterization by quantum efficiency measurements”, Progress in Photovoltaics: Research and Applications, 7 (1999) 423-436.
27. C.G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications”, Thin Solid Films, 411 (2002) 1-5.
28. C. Wang, Z. Ji, J. Xi, J. Du and Z. Ye, “Fabrication and characteristics of the low-resistive p-type ZnO thin films by DC reactive magnetron sputtering”, Materials Letters, 60 (2006) 912-914.
Chapter 7
1. J.F. Fang, D.C. Perng and J.W. Chen, “Mechanism of forming (220/204)-oriented CuInSe2 film on Al:ZnO substrate using a two-step selenization process”, Journal of Crystal Growth, 321 (2011) 106-112.
2. B.M. Başol, V.K. Kapur, A. Halani, C.R. Leidholm, J. Sharp, J.R. Sites, A. Swartzlander, R. Matson and H. Ullal, “Cu(In,Ga)Se2 thin films and solar cells prepared by selenization of metallic precursors”, Journal of Vacuum Science & Technology A, 14 (1996) 2251-2256.
3. K. Kushiya, S. Kuriyagawa, T. Kase, M. Tachiyuki, I. Sugiyama, Y. Satoh, M. Satoh and H. Takeshita, “The role of Cu(InGa)(SeS)2 surface layer on a graded band-gap Cu(InGa)Se2 thin-film solar cell prepared by two-stage method”, 25th Photovoltaic Solar Energy Conference Washington DC (1996) 989-992.
4. M. Marudachalam, R.W. Birkmire, H. Hichri, J.M. Schultz, A. Swartzlander and M.M. Al-Jassim, “Phases, morphology, and diffusion in CuInxGa1-xSe2 thin films”, Journal of Applied Physics, 82 (1997) 2896-2905.
5. J. H. Yun, R.B.V. Chalapathy, J.C. Lee, J. Song and K.H. Yoon, “Formation of CuIn1-xAlxSe2 thin films by selenization of metallic precursors in Se vapor”, Solid State Phenomena, 124-126 (2007) 975-978.
6. C.A. Kamler, R.J. Soukup, N.J. Ianno, J.L. Huguenin-Love, J. Olejníček, S.A. Darveau and C.L. Exstrom, “Thin films formed by selenization of CuInxB1-x precursors in Se vapor”, Solar Energy Materials & Solar Cells, 93 (2009) 45-50.
7. S. Nishiwaki, N. Kohara, T. Negami, H. Miyake and T. Wada, “Microstructure of Cu(In,Ga)Se2 films deposited in low Se vapor pressure”, Japanese Journal of Applied Physics, 38 (1999) 2888-2892.
8. S. Nishiwaki, T. Satoh, S. Hayashi, Y. Hashimoto, T. Negami and T. Wada, “Preparation of Cu(In,Ga)Se2 thin films from In-Ga-Se precursors for high-efficiency solar cells”, Journal of Materials Research, 14 (1999) 4514-4520.
9. S. Fridjine, S. Touihri, K. Boubaker, M. Amlouk and S. Belgacem, “Structural and optical properties of (ZnO)x(ZnSe)y thin films for optoelectronic applications”, Physica Status Solidi C, 7 (2010) 2282-2285.
10. C.G. Granqvist and A. Hultaker, “Transparent and conducting ITO films: new developments and applications”, Thin Solid Films, 411 (2002) 1-5.
11. M.A. Green, Solar Cells: Operating Principles, Technology and System Applications, Prentice-Hall, Englewood Cliffs, NJ, (1982).
12. B.M. Kayes and H.A. Atwater, “ Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells”, Journal of Applied Physics, 97 (2005) 114302-(1-11).
13. J.A. Czaban, D.A. Thompson and R.R. LaPierre, “GaAs core-shell nanowires for photovoltaic applications”, Nano Letters, 9 (2009) 148-154.
14. Z. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager and A. Javey, “Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates”, Nature Materials, 8 (2009) 648-653.
15. D.A. Neamen, Semiconductor physics & devices: basic principles, 3rd, McGraw-Hill, NY, (2002).
16. S. Chaisitsak, T. Sugiyama, A. Yamada and M. Konagai, “Cu(InGa)Se2 thin –film solar cells with high resistivity ZnO buffer layers deposited by atomic layer deposition”, Japanese Journal of Applied Physics, 38 (1999) 4989-4992.
17. T. Minemoto, T. Matsui, H. Takakura, Y. Hamakawa, T. Negami, Y. Hashimoto, T. Uenoyama, and M. Kitagawa, “Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation”, Solar Energy Materials & Solar Cells, 67 (2001) 83-88.